链接

题目

  区间[l,r]是连续满足,[l,r]中的数字的权值区间是一段连续的。多次询问可以完包含一个区间的连续区间。区间长度尽量小,如果有多个输出左端点靠左的。

分析:

  [l,r]区间是连续的,当且仅当区间内有(r-l)*2个相邻的关系,即(2,3),(6,5)都是相邻关系。那么将询问离线,不断维护左端点到当前点的区间内的相邻关系的数量。

  即当前点是i,那么如果pos[a[i]-1]<=i的话,在1~pos[a[i]-1]这些位置+1,表示从这些位置到i的区间,增加一个相邻关系。

  如果一个点j开始到i的相邻关系的数量等于(i-j),那么说明(j~i)区间是连续区间,这里两个相邻关系只算了一个。所以初始时在每个位置增加数字下标即可。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define pa pair<int,int>
using namespace std;
typedef long long LL; inline LL read() {
LL x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
pa T[N << ];
int tag[N << ], pos[N], a[N], ans1[N], ans2[N], n;
set< pa > s;
vector< pa > q[N]; pa operator + (pa A, pa B) { return A.first > B.first ? A : B; } inline void col(int x,int y) { T[x].first += y, tag[x] += y; }
inline void pushdown(int rt) { col(rt << , tag[rt]); col(rt << | , tag[rt]); tag[rt] = ; } void build(int l,int r,int rt) {
if (l == r) { T[rt] = pa(l, l); return ; }
int mid = (l + r) >> ;
build(l, mid, rt << ); build(mid + , r, rt << | );
T[rt] = T[rt << ] + T[rt << | ];
}
void update(int l,int r,int rt,int L,int R) { if (L <= l && r <= R) { T[rt].first ++, tag[rt] ++; return ; }
int mid = (l + r) >> ;
if (tag[rt]) pushdown(rt);
if (L <= mid) update(l, mid, rt << , L, R);
if (R > mid) update(mid + , r, rt << | , L, R);
T[rt] = T[rt << ] + T[rt << | ];
}
pa query(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) return T[rt];
if (tag[rt]) pushdown(rt);
int mid = (l + r) >> ;
if (R <= mid) return query(l, mid, rt << , L, R);
else if (L > mid) return query(mid + , r, rt << | , L, R);
else return query(l, mid, rt << , L, R) + query(mid + , r, rt << | , L, R);
}
bool check(pa x,int i) {
pa now = query(, n, , , -x.first);
if (now.first == i) {
ans1[x.second] = now.second, ans2[x.second] = i;
return ;
}
return ;
}
int main() {
n = read();
for (int i = ; i <= n; ++i) a[i] = read(), pos[a[i]] = i;
int m = read();
for (int i = ; i <= m; ++i) {
int l = read(), r = read(); q[r].push_back(pa(-l, i));
}
build(, n, );
for (int i = ; i <= n; ++i) {
for (int j = ; j < (int)q[i].size(); ++j) s.insert(q[i][j]);
if (a[i] > && pos[a[i] - ] <= i) update(, n, , , pos[a[i] - ]);
if (a[i] < n && pos[a[i] + ] <= i) update(, n, , , pos[a[i] + ]);
while (!s.empty())
if (check(*s.begin(), i)) s.erase(s.begin());
else break;
}
for (int i = ; i <= m; ++i) printf("%d %d\n", ans1[i], ans2[i]);
return ;
}

noi.ac 257 B的更多相关文章

  1. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  2. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  3. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  4. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  5. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  6. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  7. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  8. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  9. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

随机推荐

  1. 看jQuery的这几天

    现在在做SPA时,有很多非常好用而且流行的前端框架,比如Vue,React,Angular等,jQuery似乎要逐渐退出前端的舞台了.不得不说,'write less,do more' 这句话吸引了我 ...

  2. Unix操作系统监控详解(一)

    一.描述 监控在检查系统问题运行状况以及优化系统性能工作上是一个不可缺少的部分.通过操作系统监控工具监视操作系统资源的使用情况,间接地反映了各服务器程序的运行情况.根据运行结果分析可以帮助我们快速定位 ...

  3. docker基础:dockerfile的介绍

    Dockerfile 是一个文本格式的配置文件,用户可以使用 Dockerfile 快速创建自定义的镜像.我们会先介绍 Dockerfile 的基本结构及其支持的众多指令,并具体讲解通过执行指令来编写 ...

  4. Redis集群迁移

    1:开发中断程序,登录各个主节点查看key信息 INFO # Keyspace db0:keys,expires,avg_ttl # Keyspace db0:keys,expires,avg_ttl ...

  5. 搞定pycharm专业版的安装

    学习python也有一段时间了,装了python2,也装了python3.对于IDE当然首选了人人拍掌叫好的pycharm.其实作为小白,一开始的时候并不知道什么是IDE,什么是pychram,以为装 ...

  6. Skype 服务器客户端策略参数优化

    1.skype通讯录原理 对于skype客户端的通讯录同步,首先说说原理,通讯簿信息是从AD同步的skype前端服务器(每天1:30),在从前端服务器同步的客户端(大概1小时内同步一次). skype ...

  7. Centos7源码安装httpd2.4版本web服务器

    我们的系统平台是在centos7.5的环境下安装httpd2.4版本的软件,2.4版本的软件有一个特征就是需要安装arp包以及arp-util包才可以. 1.首先是下载httpd2.4版本的包,以及安 ...

  8. Hadoop HBase概念学习系列之HBase里的HRegion(五)

    首先,要区分,HRegion服务器包含两大部分:HLog部分和HRegion部分 HBase里的HRegion服务器  HBase里的HRegion 当表的大小超过设置值的时候,HBase会自动将表划 ...

  9. div+css ie6图片之间有间隙的问题

    图片转换为快级元素就解决了 img{display:block;} 也可设置img属性img{vertical-align:top;}

  10. 函数式编程编程即高阶函数+monad

    高阶函数负责数据的单次映射: monad负责数据处理流的串联,并使得串联函数具有相同的形式. 同时moand负责基础类型和高阶类型间的转换.