~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

转载请注明出处:

http://www.cnblogs.com/darkknightzh/p/6591923.html

参考网址:

http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow

http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter

1 终端执行程序时设置使用的GPU

如果电脑有多个GPU,tensorflow默认全部使用。如果想只使用部分GPU,可以设置CUDA_VISIBLE_DEVICES。在调用python程序时,可以使用(见第一个参考网址Franck Dernoncourt的回复):

CUDA_VISIBLE_DEVICES=1 python my_script.py
Environment Variable Syntax      Results

CUDA_VISIBLE_DEVICES=1           Only device 1 will be seen
CUDA_VISIBLE_DEVICES=0,1 Devices 0 and 1 will be visible
CUDA_VISIBLE_DEVICES="0,1" Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3 Devices 0, 2, 3 will be visible; device 1 is masked
CUDA_VISIBLE_DEVICES="" No GPU will be visible

2 python代码中设置使用的GPU

如果要在python代码中设置使用的GPU(如使用pycharm进行调试时),可以使用下面的代码(见第二个参考网址中Yaroslav Bulatov的回复):

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

3 设置tensorflow使用的显存大小

3.1 定量设置显存

默认tensorflow是使用GPU尽可能多的显存。可以通过下面的方式,来设置使用的GPU显存:

gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7。

可以按照需要,设置不同的值,来分配显存。

========================================================================

170703更新:

3.2 按需设置显存

上面的只能设置固定的大小。如果想按需分配,可以使用allow_growth参数(参考网址:http://blog.csdn.net/cq361106306/article/details/52950081):

gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

170703更新结束

========================================================================

tensorflow中使用指定的GPU及GPU显存的更多相关文章

  1. (原)tensorflow中使用指定的GPU及GPU显存

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflow.com/questions ...

  2. tensorflow中使用指定的GPU及GPU显存 CUDA_VISIBLE_DEVICES

    参考: https://blog.csdn.net/jyli2_11/article/details/73331126 https://blog.csdn.net/cfarmerreally/arti ...

  3. TensorFlow中使用GPU

    TensorFlow默认会占用设备上所有的GPU以及每个GPU的所有显存:如果指定了某块GPU,也会默认一次性占用该GPU的所有显存.可以通过以下方式解决: 1 Python代码中设置环境变量,指定G ...

  4. 深度学习中GPU和显存分析

    刚入门深度学习时,没有显存的概念,后来在实验中才渐渐建立了这个意识. 下面这篇文章很好的对GPU和显存总结了一番,于是我转载了过来. 作者:陈云 链接:https://zhuanlan.zhihu. ...

  5. TensorFlow中的显存管理器——BFC Allocator

    背景 作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 使用GPU训练时,一次训练任务无论是模型参数还是中间结果都需要占用大量显存.为了 ...

  6. [转载]tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定

    tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...

  7. tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定

    tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置: config = tf.ConfigProto(allow_soft_placement=True ...

  8. tf.Session()函数的参数应用(tensorflow中使用tf.ConfigProto()配置Session运行参数&&GPU设备指定)

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/dcrmg/article/details ...

  9. (原)PyTorch中使用指定的GPU

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6836568.html PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他G ...

随机推荐

  1. POJ 1003:Hangover

    Hangover Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 109231   Accepted: 53249 Descr ...

  2. df 、dh

    查看磁盘 不挂载获取文件系统 [root@localhost ~]# file -s /dev/sda1/dev/sda1: SGI XFS filesystem data (blksz 4096, ...

  3. yarn storm spark

    单机zookeeper http://coolxing.iteye.com/blog/1871009 storm http://os.51cto.com/art/201309/411003_2.htm ...

  4. CNN核心概念理解

    卷积神经网络 (Convolutional Neural Networks,简称CNN),是一种经典的神经网络算法.由于在图像识别领域取得的良好效果,随着人工智能的火热,它也受到越来越多的关注.CNN ...

  5. Win7 node多版本管理gnvm采坑记录

    采坑描述:下载新node版本及切换node失败 解决:1.要用管理员权限启动cmd:2.确保node是空闲的 Gnvm下载地址: 32-bit | 64-bit Github 1.下载之后为 得到一个 ...

  6. mysql 锁表的处理方式

    MySQL错误:ERROR 1205 (HY000): Lock wait timeout   处理方案:   执行mysql命令:show full processlist;   然后找出插入语句的 ...

  7. 【SpringBoot】SpringBoot Web开发(八)

    本周介绍SpringBoot项目Web开发的项目内容,及常用的CRUD操作,阅读本章前请阅读[SpringBoot]SpringBoot与Thymeleaf模版(六)的相关内容 Web开发 项目搭建 ...

  8. NumPy - 数组(定义,拼接)

    NumPy 教程(数组) set_printoptions(threshold='nan') NumPy的数组中比较重要ndarray对象属性有: ndarray.ndim:数组的维数(即数组轴的个数 ...

  9. Java算法练习——两数相加

    题目链接 题目描述 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新 ...

  10. Java编程知识点梳理

    1. elementAt()   temp.elementAt(0) 返回temp这个vector里面存放的第一个元素--->也是一个vector类型. 2. 字符串空格分割 String [] ...