Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).Description

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

因为做差分约束的题目不能保证图的联通,所以要建立超级源点,也可以直接将每一个点放入队列中,因为若图中有两个联通分量,只能便利第一个不能访问第二个,不能保证图的另一部分不存在负环。

所以这个题目要先跑一遍D(0)就是超级源点,然后若存在负环即无解就不求1——N的距离了,有解再求,两遍SPFA。

但是在看RQ的博客的时候发现了一个特殊的建图方式,因为编号小的一定在编号大的左边,我没有考虑,所以这个题数据比较弱,然后下面的代码。

AC代码1:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=50000+10; struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
}; struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
bool inq[maxn];
int cnt[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
} void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
} int bellmanford(int s)
{
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
queue<int> Q;
for(int i=1;i<=n;i++) d[i]= i==s?0:INF;
Q.push(s); while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
if(++cnt[e.to]>n) return -1;
}
}
}
}
return d[n]==INF?-2:d[n];
}
}BF; int main()
{
int n,ml,md;
while(scanf("%d%d%d",&n,&ml,&md)==3)
{
BF.init(n);
while(ml--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(u,v,d);
}
while(md--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(v,u,-d);
}
for(int i=1;i<=n;i++)
BF.AddEdge(0,i,0);
if(BF.bellmanford(0)!=-1) printf("%d\n",BF.bellmanford(1));
else puts("-1");
}
return 0;
}
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=50000+10; struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
}; struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
bool inq[maxn];
int cnt[maxn];
int d[maxn]; void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
} void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
} int bellmanford()
{
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
queue<int> Q;
for(int i=1;i<=n;i++) d[i]= i==1?0:INF;
Q.push(1); while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
if(++cnt[e.to]>n) return -1;
}
}
}
}
return d[n]==INF?-2:d[n];
}
}BF; int main()
{
int n,ml,md;
while(scanf("%d%d%d",&n,&ml,&md)==3)
{
BF.init(n);
while(ml--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(u,v,d);
}
while(md--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(v,u,-d);
}
for(int i=2;i<=n;i++)
BF.AddEdge(i,i-1,0);
printf("%d\n",BF.bellmanford());
}
return 0;
}

图论--差分约束--POJ 3169 Layout(超级源汇建图)的更多相关文章

  1. 图论--差分约束--POJ 3159 Candies

    Language:Default Candies Time Limit: 1500MS   Memory Limit: 131072K Total Submissions: 43021   Accep ...

  2. 图论--差分约束--POJ 1364 King

    Description Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen p ...

  3. 网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)

    Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...

  4. 差分约束系统 POJ 3169 Layout

    题目传送门 题意:有两种关系,n牛按照序号排列,A1到B1的距离不超过C1, A2到B2的距离不小于C2,问1到n的距离最大是多少.如果无限的话是-2, 如果无解是-1 分析:第一种可以写这样的方程: ...

  5. 图论--差分约束--POJ 2983--Is the Information Reliable?

    Description The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years a ...

  6. 图论--差分约束--POJ 1201 Intervals

    Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 30971 Accepted: 11990 Descripti ...

  7. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  8. (简单) POJ 3169 Layout,差分约束+SPFA。

    Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...

  9. POJ 3169 Layout 【差分约束】+【spfa】

    <题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...

随机推荐

  1. Git应用详解第四讲:版本回退的三种方式与stash

    前言 前情提要:Git应用详解第三讲:本地分支的重要操作 git作为一款版本控制工具,其最核心的功能就是版本回退,没有之一.熟悉git版本回退的操作能够让你真真正正地放开手脚去开发,不用小心翼翼,怕一 ...

  2. python 网络编程---粘包

    一.什么是粘包?(只有在TCP中有粘包现象,在UDP中永远不会粘包) 黏包不一定会发生. 如果发生 了:1.可能是在客户端已经粘了 2.客户端没有粘,可能是在服务端粘了. 所谓的粘包问题:主要是是因为 ...

  3. 36 Thread 多线程

    /* * 多线程的实现方式: * 方式1:一种方法是将类声明为 Thread 的子类.该子类应重写 Thread 类的 run 方法.接下来可以分配并启动该子类的实例 * * Thread * Str ...

  4. tcp协议:三次握手四次挥手详解-转

    https://www.cnblogs.com/welan/p/9925119.html

  5. PostgreSQL中RECURSIVE递归查询使用总结

    RECURSIVE 前言 CTE or WITH 在WITH中使用数据修改语句 WITH使用注意事项 RECURSIVE 递归查询的过程 拆解下执行的过程 1.执行非递归部分 2.执行递归部分,如果是 ...

  6. Silverlight 2.5D RPG游戏技巧与特效处理:(十一)AI系统

    Silverlight 2.5D RPG游戏技巧与特效处理:(十一)AI系统 作者: 深蓝色右手  来源: 博客园  发布时间: 2011-04-19 11:18  阅读: 1282 次  推荐: 0 ...

  7. 玩转控件:Fucking ERP之流程图

    前言 首先,跟守护在作者公众号和私信作者催更的朋友们道个歉.疫情的原因,公司从年初到现在一直处于996+的高压模式,导致公众号更新频率较低.而且作者每更新一篇原创公众号,既要对自己沉淀知识负责,也要对 ...

  8. IOC 概念

    转摘:https://www.cnblogs.com/DebugLZQ/archive/2013/06/05/3107957.html 博文目录 1.IOC的理论背景 2.什么是IOC 3.IOC也叫 ...

  9. Python之学会测试,让开发更加高效(一)

      前几天,听了公司某位大佬关于编程心得的体会,其中讲到了"测试驱动开发",感觉自己的测试技能薄弱,因此,写下这篇文章,希望对测试能有个入门.这段时间,笔者也体会到了测试的价值,一 ...

  10. 大数据hbase分布式安装及其部署。

    大数据hbase分布式安装及其部署. 首先要启动Hadoop以及zookeeper,可以参考前面发布的文章. 将hbase的包上传至master节点 这里我使用的是1.3.6的版本,具体的根据自己的版 ...