图论--差分约束--POJ 3169 Layout(超级源汇建图)
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).Description
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
因为做差分约束的题目不能保证图的联通,所以要建立超级源点,也可以直接将每一个点放入队列中,因为若图中有两个联通分量,只能便利第一个不能访问第二个,不能保证图的另一部分不存在负环。
所以这个题目要先跑一遍D(0)就是超级源点,然后若存在负环即无解就不求1——N的距离了,有解再求,两遍SPFA。
但是在看RQ的博客的时候发现了一个特殊的建图方式,因为编号小的一定在编号大的左边,我没有考虑,所以这个题数据比较弱,然后下面的代码。
AC代码1:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=50000+10;
struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
bool inq[maxn];
int cnt[maxn];
int d[maxn];
void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
}
int bellmanford(int s)
{
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
queue<int> Q;
for(int i=1;i<=n;i++) d[i]= i==s?0:INF;
Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
if(++cnt[e.to]>n) return -1;
}
}
}
}
return d[n]==INF?-2:d[n];
}
}BF;
int main()
{
int n,ml,md;
while(scanf("%d%d%d",&n,&ml,&md)==3)
{
BF.init(n);
while(ml--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(u,v,d);
}
while(md--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(v,u,-d);
}
for(int i=1;i<=n;i++)
BF.AddEdge(0,i,0);
if(BF.bellmanford(0)!=-1) printf("%d\n",BF.bellmanford(1));
else puts("-1");
}
return 0;
}
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=1000+10;
const int maxm=50000+10;
struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
bool inq[maxn];
int cnt[maxn];
int d[maxn];
void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
}
int bellmanford()
{
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
queue<int> Q;
for(int i=1;i<=n;i++) d[i]= i==1?0:INF;
Q.push(1);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
if(++cnt[e.to]>n) return -1;
}
}
}
}
return d[n]==INF?-2:d[n];
}
}BF;
int main()
{
int n,ml,md;
while(scanf("%d%d%d",&n,&ml,&md)==3)
{
BF.init(n);
while(ml--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(u,v,d);
}
while(md--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
BF.AddEdge(v,u,-d);
}
for(int i=2;i<=n;i++)
BF.AddEdge(i,i-1,0);
printf("%d\n",BF.bellmanford());
}
return 0;
}
图论--差分约束--POJ 3169 Layout(超级源汇建图)的更多相关文章
- 图论--差分约束--POJ 3159 Candies
Language:Default Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 43021 Accep ...
- 图论--差分约束--POJ 1364 King
Description Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen p ...
- 网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)
Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...
- 差分约束系统 POJ 3169 Layout
题目传送门 题意:有两种关系,n牛按照序号排列,A1到B1的距离不超过C1, A2到B2的距离不小于C2,问1到n的距离最大是多少.如果无限的话是-2, 如果无解是-1 分析:第一种可以写这样的方程: ...
- 图论--差分约束--POJ 2983--Is the Information Reliable?
Description The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years a ...
- 图论--差分约束--POJ 1201 Intervals
Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 30971 Accepted: 11990 Descripti ...
- 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)
Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- POJ 3169 Layout 【差分约束】+【spfa】
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
随机推荐
- WireShark数据包分析一:认识WireShark
一.认识WireShark WireShark是一款抓包软件,官方网址:WireShark.org 官网如下图: 选择Download,在官网下载安装WireShark即可. WireShark可用来 ...
- C语言 加密解密
加密解密算法,对于一个未接触加密的人来说,这听起来是多么可望而不可及,但是只要我们理解了加密的本质,对于它就没那么陌生了,更难的是加密的算法,而不是加密这个术语上! 我们知道,文本文件是以ascii码 ...
- Flask 入门(十二)
Blueprint ,听说过么? 那必须的啊!但它是干嗒的?也不难理解! 如果你的项目是一个公司,Blueprint就是治理你的公司的 没有Blueprint,你的公司除了老板就是员公 有了Bluep ...
- CentOS之crontab
1.crontab介绍 功能说明:设置计时器. 语 法:crontab [-u <用户名称>][配置文件] 或 crontab [-u <用户名称>][-elr] 补充说明:c ...
- System.out.println()的真实含义
每一个人的Java学习之路上恐怕都是用以下代码开始的吧? public class Test { public static void main(String[] args) { System.out ...
- "三号标题"组件:<h3> —— 快应用组件库H-UI
 <import name="h3" src="../Common/ui/h-ui/text/c_h3"></import> < ...
- sql 案例
select now();#获取当前系统时间 select now() from dual;#与Oracle兼容 show character set;#产看当前数据库支持的字符集 create da ...
- lr事务
事务:transaction(性能里面的定义:客户机对服务器发送请求,服务器做出反应的过程) 用于模拟用户的一个相对完整的业务操作过程:如登录,查询,交易等操作(每次http请求不会用来作为一个事务) ...
- Go中的unsafe
unsafe 最近关注了一个大佬的文章,文章写的非常好,大家可以去关注下. 微信公众号[码农桃花源] 指针类型 我们知道slice 和 map 包含指向底层数据的指针 什么是 unsafe 为什么会有 ...
- slice使用了解
切片 什么是slice slice的创建使用 slice使用的一点规范 slice和数组的区别 slice的append是如何发生的 复制Slice和Map注意事项 什么是slice Go中的切片,是 ...