Fibonacci Sequence
0 递归
斐波那契数列定义:
$F(n)=\left\{\begin{matrix}
0, & n=0\\
1, & n=1\\
F(n-1)+F(n-2), & n>1
\end{matrix}\right.$
递归解法最直观,但是复杂度也最高:$O(2^n)$
int Fibonacci(int n)
{
if (n <= ) //细节可以处理非法输入
return ;
else if ( == n)
return ;
return Fibonacci(n - ) + Fibonacci(n - );
}
为了避免重复计算,可以将每一步计算得到的$F(i)$存起来,这样的话时间复杂度降为$O(n)$,但空间复杂度升为$O(n)$。
1 通项
求解通项的方法有好几种,下面展示一种用线性代数求解的方法:
斐波那契数列的递推公式是二阶差分方程,先用一点小技巧将其化为一阶:
$$
\begin{cases}
F_{k+2}=F_{k+1}+F_{k}& \text{}\\
F_{k+1}=F_{k+1}& \text{}\\
\end{cases}$$
我们令$u_k=\begin{bmatrix}
F_{k+1}\\
F_{k}\\
\end{bmatrix}$,那么$u_{k+1}=\begin{bmatrix}
F_{k+2}\\
F_{k+1}\\
\end{bmatrix}=\begin{bmatrix}
1 & 1\\
1 & 0\\
\end{bmatrix}u_k$。
矩阵$A=\begin{bmatrix}
1 & 1\\
1 & 0\\
\end{bmatrix}$,令$det(A-\lambda I)=\lambda^2-\lambda-1=0$,求得$\lambda=\frac{1\pm \sqrt5}{2}$,对应于两个特征值的特征向量为$x_1=\begin{bmatrix}
\lambda_1\\
1\\
\end{bmatrix},x_2=\begin{bmatrix}
\lambda_2\\
1\\
\end{bmatrix}$。
求得特征值和特征向量后,我们将$u_0=\begin{bmatrix}
F_1\\
F_0\\
\end{bmatrix}=\begin{bmatrix}
1\\
0\\
\end{bmatrix}=c_1x_1+c_2x_2$,解得$c_1=-\frac{1}{\sqrt5}, c_2=\frac{1}{\sqrt5}$
故
$u_k=S\Lambda^{k}c=\begin{bmatrix}
c_1\lambda_1^{k+1}+c_2\lambda_2^{k+1}\\
c_1\lambda_1^{k}+c_2\lambda_2^{k}\\
\end{bmatrix}$
所以通项公式可以表示为$F(n)=C_1\lambda_1^n+C_2\lambda_2^n$。
故斐波那契数列的通项公式为:
$F(n)=\frac{1}{\sqrt5}[(\frac{1+\sqrt5}{2})^n-(\frac{1-\sqrt5}{2})^n]$
用公式求解的复杂度为$O(1)$,但是由于无理数在计算机中的存储不是精确的,所以结果的精度很难保证。
2 分治
通过矩阵形式的递推:
$$\begin{bmatrix}
F(n)\\
F(n-1)
\end{bmatrix}=\begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}\begin{bmatrix}
F(n-1)\\
F(n-2)
\end{bmatrix}$$
不断向下递推,可以得到:
$$\begin{bmatrix}
F(n)\\
F(n-1)
\end{bmatrix}={\begin{bmatrix}
1 & 1\\
1 & 0
\end{bmatrix}}^{n-1}\begin{bmatrix}
F(1)\\
F(0)
\end{bmatrix}$$
接下来就是求解矩阵的高次方,通过快速幂(https://baike.baidu.com/item/快速幂/5500243?fr=aladdin)可以在$O(logn)$时间内进行计算:
整数的快速幂代码:
int QuickPow(int a,int n)
{
int ans = ;
while (n)
{
if (n & )
ans *= a;
a *= a;
n >>= ;
} return ans;
}
// 递归版本
int raise(int base, int exp) {
if (exp == )
return ;
int half = raise(base, exp / );
if (exp % )
return base * half * half;
else
return half * half;
}
将传入的参数改为矩阵,乘法改为矩阵乘法,就可以得到矩阵快速幂:
以二阶矩阵为例,求解斐波那契数列:
#define _CRT_SECURE_NO_WARNINGS #include <iostream> using namespace std; struct Matrix {
int a[][];
}base,ans; Matrix multi(Matrix a, Matrix b)
{
Matrix res;
for (int i = ; i < ; i++) //第i行
{
for (int j = ; j < ; j++) //第j列
{
res.a[i][j] = ;
for (int k = ; k < ; k++)
res.a[i][j] += a.a[i][k] * b.a[k][j];
}
} return res;
} Matrix QuickPow(int n)
{
base.a[][] = base.a[][] = base.a[][] = ;
base.a[][] = ; //初始化矩阵 //结果矩阵初始化为单位阵
ans.a[][] = ans.a[][] = ;
ans.a[][] = ans.a[][] = ; while (n)
{
if (n & )
{
ans = multi(ans, base);
}
base = multi(base, base);
n >>= ;
} return ans;
} int main()
{
int n;
cin >> n; QuickPow(n);
cout << ans.a[][] << endl; return ;
}
3 动态规划
int Fibonacci(int n) {
int a = , b = ;
int ans = ;
for(int i = ;i < n;++i) {
ans = a + b;
a = b;
b = ans;
}
return ans;
}
参考:https://www.zhihu.com/question/28062458/answer/39763094
Fibonacci Sequence的更多相关文章
- 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现
最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...
- ***1133. Fibonacci Sequence(斐波那契数列,二分,数论)
1133. Fibonacci Sequence Time limit: 1.0 secondMemory limit: 64 MB is an infinite sequence of intege ...
- python实现斐波那契数列(Fibonacci sequence)
使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...
- 用递归方法计算斐波那契数列(Recursion Fibonacci Sequence Python)
先科普一下什么叫斐波那契数列,以下内容摘自百度百科: 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因意大利数学家列昂纳多·斐波那契(Leonardoda Fibonacci ...
- [Algorithm] Fibonacci Sequence - Anatomy of recursion and space complexity analysis
For Fibonacci Sequence, the space complexity should be the O(logN), which is the height of tree. Che ...
- SQL Server ->> 斐波那契数列(Fibonacci sequence)
斐波那契数列(Fibonacci sequence)的T-SQL实现 ;WITH T AS ( AS BIGINT) AS curr, CAST(NULL AS BIGINT) AS prv UNIO ...
- python3 求斐波那契数列(Fibonacci sequence)
输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列( ...
- LeetCode 842. Split Array into Fibonacci Sequence
原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...
- Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度
Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...
- fibonacci number & fibonacci sequence
fibonacci number & fibonacci sequence https://www.mathsisfun.com/numbers/fibonacci-sequence.html ...
随机推荐
- MyBatis(九):动态SQL
本文是按照狂神说的教学视频学习的笔记,强力推荐,教学深入浅出一遍就懂!b站搜索狂神说或点击下面链接 https://space.bilibili.com/95256449?spm_id_from=33 ...
- 通过operator函数将字符串转换回运算符
需求 由于某些需要,将一些运算符做了列表,以便后续的程序判断传入的字符串中是否包含该列表中的某一个运算符,如果包含,就用该运算符做运算. 但该运算符已经转换是字符串了,没有办法做运算符用,经过全网搜索 ...
- 从String 聊源码解读
@ 目录 源码实现 构造方法 equals 其他方法 常见面试题 你真的了解String吗?之前一篇博客写jvm时,就觉得String可以单独拎出来写一篇博客,毕竟几乎所有的面试都是以String开始 ...
- 谁给你说的 Ubuntu 不可以输入中文
文章更新于:2020-04-04 按照惯例,需要的文件附上链接放在文首 文件名:sogoupinyin_2.3.1.0112_amd64.deb 文件大小:25.5 MB 下载链接:https://w ...
- .net core 对dapper 新增 更新 删除 查询 的扩展
早期的版本一直用的是EF,但是EF一直有个让人很不爽的东西需要mapping 实体对象:如果没有映射的情况下连查询都没办法: 所以后来开始使用dapper 但是dapper都是直接用的是sql,这个对 ...
- 用robotframework 标准库String解决由于存在千分位分隔符导致两个数值不相等的问题。
在编写robotframework自动化断言的过程中,我遇到了如下问题: 我想写一个两个金额判断是否相等的断言,其中一个金额是展示字段存在千分位分隔符,另一个金额是input带入字段,没有千分位分隔符 ...
- Struts2-学习笔记系列(4)-访问servlet api
5.1通过actioncontext: public String execute() throws Exception { ActionContext ctx = ActionContext.get ...
- scala_spark实践3
Spark 读写HBase优化 读数据 可以采用RDD的方式读取HBase数据: val conf = HBaseConfiguration.create() conf.set(TableInputF ...
- java中取得用户输入的方法
java中取得用户输入的方法 1.采用java.util.Scanner类 采用Scannerd的next()方法读取,测试代码如下: Scanner sc=new Scanner(System.in ...
- SpringCloud(三)学习笔记之Ribbon
spring Cloud Ribbon 是一个客户端的负载均衡器,它提供对大量的HTTP和TCP客户端的访问控制. 客户端负载均衡即是当浏览器向后台发出请求的时候,客户端会向 Eureka Serve ...