题目链接:https://vjudge.net/contest/299467#problem/K

这个题目从数据范围来看可以发现是网络流,怎么建图呢?这个其实不是特别难,主要是读题难。

这个建图就是把源点和每一个蜥蜴存在的点相连,汇点和可以跑出去的相连,因为这个题目对于每一个点都有次数要求,所以就要拆点。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 5e5 + ;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++)
{
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < )
{
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > )
{
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for (;;)
{
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > )
{
flow += f;
}
}
return flow;
} struct node
{
int x, y, flow;
}exa[maxn]; int main()
{
int qaq, cas = ;
scanf("%d", &qaq);
while(qaq--)
{
init();
int nn, dd, tot = , len;
char cs[];
scanf("%d%d", &nn, &dd);
for(int i=;i<nn;i++)
{
scanf("%s", cs);
len = strlen(cs);
for(int j=;j<len;j++)
{
exa[++tot].x = i;
exa[tot].y = j;
exa[tot].flow = cs[j] - '';
}
}
char mp[][];
int s = , t = tot * + ;
for(int i=;i<nn;i++)
{
scanf("%s", mp[i]);
}
int sum = ;
for(int i=;i<=tot;i++)
{
if(exa[i].flow>)
{
add(i, i + tot, exa[i].flow); if (mp[exa[i].x][exa[i].y] == 'L')
{
sum++;
add(s, i, );
}
if (exa[i].x < dd || exa[i].y < dd || (nn - exa[i].x) <= dd || (len - exa[i].y) <= dd) add(i + tot, t, inf); for(int j=;j<=tot;j++)
{
if (i == j) continue;
int dis = (exa[i].x - exa[j].x)*(exa[i].x - exa[j].x) + (exa[i].y - exa[j].y)*(exa[i].y - exa[j].y);
if (exa[j].flow&&dis <= dd*dd)
{
add(i+tot, j, inf);
}
}
}
}
int ans = Maxflow(s, t);
sum = sum - ans;
if (sum == ) printf("Case #%d: no lizard was left behind.\n",++cas);
else if (sum == ) printf("Case #%d: 1 lizard was left behind.\n",++cas);
else printf("Case #%d: %d lizards were left behind.\n",++cas,sum);
}
return ;
}
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 5e5 + ;
struct edge
{
int u, v, c, f;
edge(int u, int v, int c, int f) :u(u), v(v), c(c), f(f) {}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层,表示每个点的层数
int iter[maxn];//当前弧优化
int m;
void init()
{
for (int i = ; i <= maxn; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)//预处理出level数组
//直接BFS到每个点
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = ; v < G[u].size(); v++)
{
edge& now = e[G[u][v]];
if (now.c > now.f && level[now.v] < )
{
level[now.v] = level[u] + ;
q.push(now.v);
}
}
}
}
int dfs(int u, int t, int f)//DFS寻找增广路
{
if (u == t)return f;//已经到达源点,返回流量f
for (int &v = iter[u]; v < G[u].size(); v++)
//这里用iter数组表示每个点目前的弧,这是为了防止在一次寻找增广路的时候,对一些边多次遍历
//在每次找增广路的时候,数组要清空
{
edge &now = e[G[u][v]];
if (now.c - now.f > && level[u] < level[now.v])
//now.c - now.f > 0表示这条路还未满
//level[u] < level[now.v]表示这条路是最短路,一定到达下一层,这就是Dinic算法的思想
{
int d = dfs(now.v, t, min(f, now.c - now.f));
if (d > )
{
now.f += d;//正向边流量加d
e[G[u][v] ^ ].f -= d;
//反向边减d,此处在存储边的时候两条反向边可以通过^操作直接找到
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for (;;)
{
BFS(s);
if (level[t] < )return flow;//残余网络中到达不了t,增广路不存在
memset(iter, , sizeof(iter));//清空当前弧数组
int f;//记录增广路的可增加的流量
while ((f = dfs(s, t, INF)) > )
{
flow += f;
}
}
return flow;
} struct node
{
int x, y, flow;
}exa[maxn]; int main()
{
int qaq, cas = ;
scanf("%d", &qaq);
while (qaq--)
{
init();
int nn, dd, tot = , len;
char cs[];
scanf("%d%d", &nn, &dd);
for (int i = ; i <= nn; i++)
{
scanf("%s", cs+);
len = strlen(cs+);//这个地方要注意一下,就是因为这个wa了几发,这个地方不可以写strlen(cs)-1
for (int j = ; j <= len; j++)
{
exa[++tot].x = i;
exa[tot].y = j;
exa[tot].flow = cs[j] - '';
}
}
char mp[][];
int s = , t = tot * + ;
for (int i = ; i <= nn; i++)
{
scanf("%s", mp[i]+);
}
int sum = ;
for (int i = ; i <= tot; i++)
{
if (exa[i].flow > )
{
add(i, i + tot, exa[i].flow); if (mp[exa[i].x][exa[i].y] == 'L')
{
sum++;
add(s, i, );
}
if (exa[i].x <= dd || exa[i].y <= dd || (nn - exa[i].x) < dd || (len - exa[i].y) < dd) add(i + tot, t, inf); for (int j = ; j <= tot; j++)
{
if (i == j) continue;
int dis = (exa[i].x - exa[j].x)*(exa[i].x - exa[j].x) + (exa[i].y - exa[j].y)*(exa[i].y - exa[j].y);
if (exa[j].flow&&dis <= dd * dd)
{
add(i + tot, j, inf);
}
}
}
}
int ans = Maxflow(s, t);
sum = sum - ans;
if (sum == ) printf("Case #%d: no lizard was left behind.\n", ++cas);
else if (sum == ) printf("Case #%d: 1 lizard was left behind.\n", ++cas);
else printf("Case #%d: %d lizards were left behind.\n", ++cas, sum);
}
return ;
}

K - Leapin' Lizards HDU - 2732 网络流的更多相关文章

  1. 【解题报告】 Leapin' Lizards HDU 2732 网络流

    [解题报告] Leapin' Lizards HDU 2732 网络流 题外话 在正式讲这个题目之前我想先说几件事 1. 如果大家要做网络流的题目,我在网上看到一个家伙,他那里列出了一堆网络流的题目, ...

  2. K - Leapin' Lizards - HDU 2732(最大流)

    题意:在一个迷宫里面有一些蜥蜴,这个迷宫有一些柱子组成的,并且这些柱子都有一个耐久值,每当一只蜥蜴跳过耐久值就会减一,当耐久值为0的时候这个柱子就不能使用了,每个蜥蜴都有一个最大跳跃值d,现在想知道有 ...

  3. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  4. Leapin' Lizards(hdu 2732)

    Leapin' Lizards Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. Leapin' Lizards [HDU - 2732]【网络流最大流】

    题目链接 网络流直接最大流就是了,只是要拆点小心一个点的流超出了原本的正常范围才是. #include <iostream> #include <cstdio> #includ ...

  6. Leapin' Lizards HDU - 2732 (恶心的建图。。)

    这道题其实不难...就是建图恶心了点....emm... 题意: 多源多汇 + 拆边 青蛙跳柱子, 每根柱子都有一定的承载能力, 青蛙跳上去之后柱子的承载能力就会减一,跳到边界就能活 跳不到就over ...

  7. HDU 2732 Leapin&#39; Lizards(拆点+最大流)

    HDU 2732 Leapin' Lizards 题目链接 题意:有一些蜥蜴在一个迷宫里面,有一个跳跃力表示能跳到多远的柱子,然后每根柱子最多被跳一定次数,求这些蜥蜴还有多少是不管怎样都逃不出来的. ...

  8. hdu2732 Leapin' Lizards (网络流dinic)

    D - Leapin' Lizards Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  9. Leapin' Lizards(经典建图,最大流)

    Leapin' Lizards http://acm.hdu.edu.cn/showproblem.php?pid=2732 Time Limit: 2000/1000 MS (Java/Others ...

随机推荐

  1. 一、uart&tty驱动

    一.I.MX6 UART驱动 文件路径:\linux_IMX6_CoreC_3..35_for_Linux\drivers\tty\serial\imx.c .驱动入口函数:imx_serial_in ...

  2. AJ学IOS(26)UI之iOS抽屉效果小Demo

    AJ分享,必须精品 先看效果 实现过程 第一步,把三个view设置好,还有颜色 #warning 第一步 - (void)addChildView { // left UIView *leftView ...

  3. Android应用架构分析

    一.res目录: 1.属性:Android必需: 2.作用:存放Android项目的各种资源文件.这些资源会自动生成R.java. 2.1.layout:存放界面布局文件. 2.2.strings.x ...

  4. Flask接口开发过程中的心得2019.10.03

    完善了一下慕课网实战中的post接口开发,得到了一些进步: 代码如下: #coding=utf-8 from flask import Flask from flask import request ...

  5. Java读源码之CountDownLatch

    前言 相信大家都挺熟悉 CountDownLatch 的,顾名思义就是一个栅栏,其主要作用是多线程环境下,让多个线程在栅栏门口等待,所有线程到齐后,栅栏打开程序继续执行. 案例 用一个最简单的案例引出 ...

  6. [PHP][linux] 命令行脚本接收传入参数的

    第一种 :用{ $argv }接受参数 第二种 : getopt() 第三种:

  7. js上传文件前判断获取文件大小并且加以判断

    描述:要求浏览器单个上传文件大小不超过10M. 解决方案: var fileSize = $("#fileId")[0].files[0].size/(1024*1024);if( ...

  8. JS 获取浏览器

    function getInfo() { var s = ""; s = " 网页可见区域宽:" document.body.clientWidth; s = ...

  9. JS - Promise使用详解

    参考:https://www.cnblogs.com/developer-ios/p/10510564.html

  10. Selenium常见报错问题(1)- 先来认识下selenium常见异常类

    如果你在跑selenium脚本时,需要某些异常不知道怎么解决时,可以看看这一系列的文章,看看有没有你需要的答案 https://www.cnblogs.com/poloyy/category/1749 ...