scikitlearn库中调用k-近邻算法的操作步骤
1、k近邻算法可以说是唯一一个没有训练过程的机器学习算法,它含有训练基础数据集,但是是一种没有模型的算法,为了将其和其他算法进行统一,我们把它的训练数据集当做它的模型本身。
2、在scikitlearn中调用KNN算法的操作步骤如下(利用实际例子举例如下):
#1导入相应的数据可视化模块
import numpy as np
import matplotlib.pyplot as plt
#2输入训练的数据集x_train、y_train
raw_data_X=[[3.393533211,2.331273381],
[3.110073483,1.781539638],
[1.343808831,3.368360954],
[3.582294042,4.679179110],
[2.280362439,2.866990263],
[7.423436942,4.696522875],
[5.745051997,3.533989803],
[9.172168622,2.511101045],
[7.792783481,3.424088941],
[7.939820817,0.791637231]]
raw_data_Y=[0,0,0,0,0,1,1,1,1,1]
x_train=np.array(raw_data_X)
y_train=np.array(raw_data_Y)
x=np.array([8.093607318,3.365731514])
#特别注意:scilearn模块里面验证数据都将默认为二维数据,如果不是,则需要使用.reshape(1,-1)函数对其进行转换
#3从scikitlearn库中调用相应的机器学习算法
from sklearn.neighbors import KNeighborsClassifier #调用算法库
KNN_classifier=KNeighborsClassifier(n_neighbors=6) #定义新的算法
KNN_classifier.fit(x_train,y_train) #基础数据训练模型
#4导入测试的数据集test_data和test_target
test_data1=[[3.93533211,2.33127381],
[3.10073483,1.78159638],
[1.34808831,3.36830954],
[3.58294042,4.67919110],
[2.28032439,2.86690263],
[7.42343942,4.69652875],
[5.74505997,3.53399803],
[9.17216622,2.51101045],
[7.79278481,3.42488941],
[7.93982087,0.79637231]]
test_data=np.array(test_data1)
test_target=[0,0,0,0,1,1,0,0,0,0]
x=x.reshape(1,-1)
print(KNN_classifier.predict(x))
y_pred=KNN_classifier.predict(test_data) #对测试数据进行预测
#5对于算法的准确度进行输出和评估(准确度和混淆矩阵)
from sklearn import metrics #引入机器学习的验证模块
print(metrics.accuracy_score(y_true=test_target,y_pred=y_pred)) #输出整体预测结果的准确率,其中第三个参数normalize=False表示输出结果预测正确的个数
print(metrics.confusion_matrix(y_true=test_target,y_pred=y_pred)) #输出混淆矩阵,如果为对角阵,则表示预测结果是正确的,准确度越大
3、从scikitlearn库中调用相应的机器学习算法的步骤如下:
(1)从scikitlearn库中调用相应的机器学习算法模块;
(2)输入相应的算法参数定义一个新的算法;
(3)输入基础训练数据集进行训练;
(4)输入测试数据集对其结果进行预测;
(5)将预测结果与真实结果进行对比,输出其算法的准确率(或者混淆矩阵)
4、对于机器学习算法的准确度评价主要有以下几种方式:
(1)利用scikitlearn中的accuracy函数:
from sklearn import metrics #引入机器学习的验证模块
print(metrics.accuracy_score(y_true=y_test,y_pred=y_pred)) #输出整体预测结果的准确率,其中第三个参数normalize=False表示输出结果预测正确的个数
print(metrics.confusion_matrix(y_true=y_test,y_pred=y_pred)) #输出混淆矩阵,如果为对角阵,则表示预测结果是正确的,准确度越大
(2)直接利用机器学习算法中的.score(X,y)函数输出算法的准确度
其中X表示数据的测试集(x_test),y代表真实目标值(y_test)
scikitlearn库中调用k-近邻算法的操作步骤的更多相关文章
- Asp.net页面中调用soapheader进行验证的操作步骤
Asp.net页面中调用以SOAP头作验证的web services操作步骤 第一步:用来作SOAP验证的类必须从SoapHeader类派生,类中Public的属性将出现在自动产生XML节点中,即: ...
- GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...
- 机器学习:k-NN算法(也叫k近邻算法)
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...
- 02-16 k近邻算法
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...
- 1.K近邻算法
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...
- 02-18 scikit-learn库之k近邻算法
目录 scikit-learn库之k近邻算法 一.KNeighborsClassifier 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 方法 1.4.1 kneighbors([X, n ...
- 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...
- 【笔记】KNN之网格搜索与k近邻算法中更多超参数
网格搜索与k近邻算法中更多超参数 网格搜索与k近邻算法中更多超参数 网络搜索 前笔记中使用的for循环进行的网格搜索的方式,我们可以发现不同的超参数之间是存在一种依赖关系的,像是p这个超参数,只有在 ...
- 机器学习算法之K近邻算法
0x00 概述 K近邻算法是机器学习中非常重要的分类算法.可利用K近邻基于不同的特征提取方式来检测异常操作,比如使用K近邻检测Rootkit,使用K近邻检测webshell等. 0x01 原理 ...
随机推荐
- WLC Crash采集什么信息?
WLC和思科的路由器交换机不同,Cisco的WLC采用的是AireOS. 如果WLC crash或无故重启,可以尝试采集如下信息: AireOS WLC version 8.0.140.0 or hi ...
- nodejs的POST两种type类型提交(原生)
POST数据的两种提交格式 application/x-www-form-urlencoded(上传数据中没有文件) multipart/form-data (文件上传) 获取POST数据,post数 ...
- python记录点
python记录点 文件编码 Unicode使用最少2个字节(1个字节=1BYTE=8bit=一个长度为8的二进制数) 来表示字母和符号等,有时候是4个字节. UTF-8是对Unicode编码的压缩和 ...
- Spring报错汇总笔记
报错信息: org.springframework.beans.factory.BeanDefinitionStoreException: Unexpected exception parsing X ...
- day4-1深入理解对象之创建对象
深入理解对象 之创建对象: 工厂模式: 工厂模式虽然解决了创建\多个相似对象的问题,但却没有解决对象识别的问题(即怎样知道一个对象的类型) 工厂模式问题:那就是识别问题,因为根本无法 搞清楚他们到底是 ...
- mapreduce程序执行过程
1.客户端程序,设置作业相关的配置和计算输入分片信息,向RM获取一个JOBID,提交作业信息(分片)到以作业ID为目录下,通知APP——MASTER 2.APP——MASTER,读取指定目录下的作业信 ...
- Assign the task-HDU3974 dfs序+线段树
题意: 一个公司有n个员工,每个员工都有一个上司,一个人下属的下属也是这个人的下属,因此可将他们的关系看成一棵树, 然后给定两种操作,C操作是查询当前员工的工作,T操作是将y工作分配给x员工,当一个人 ...
- 吴裕雄--天生自然ORACLE数据库学习笔记:用户管理与权限分配
create user mr identified by mrsoft default tablespace users temporary tablespace temp; create user ...
- 【转】PowerDesigner数据库视图同时显示Code和Name
1.按顺序打开: Tools>>>Display Preference 2.依次点击 选中Code打钩,并点击箭头指向图标把Code置顶 3.最终效果图 原文链接
- 二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)(04-1)
二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本 ...