tensorflow应用于手写数字识别(第二版)
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data#载入数据集
mnist = input_data.read_data_sets("F:\\TensorflowProject\\MNIST_data",one_hot=True) #每个批次的大小,训练时一次100张放入神经网络中训练
batch_size = 100 #计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size #定义两个placeholder
x = tf.placeholder(tf.float32,[None,784])
#0-9十个数字
y = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
lr = tf.Variable(0.001,dtype=tf.float32) #创建一个神经网络
# W = tf.Variable(tf.zeros([784,10]))
# b = tf.Variable(tf.zeros([10]))
W1 = tf.Variable(tf.truncated_normal([784,500],stddev=0.1))
b1 = tf.Variable(tf.zeros([500])+0.1)
L1 = tf.nn.tanh(tf.matmul(x,W1)+b1)
L1_drop = tf.nn.dropout(L1,keep_prob) #隐藏层1
W2 = tf.Variable(tf.truncated_normal([500,300],stddev=0.1))
b2 = tf.Variable(tf.zeros([300])+0.1)
L2 = tf.nn.tanh(tf.matmul(L1_drop,W2)+b2)
L2_drop = tf.nn.dropout(L2,keep_prob) #隐藏层2
W3 = tf.Variable(tf.truncated_normal([300,10],stddev=0.1))
b3 = tf.Variable(tf.zeros([10])+0.1)
#L3 = tf.nn.tanh(tf.matmul(L2_drop,W3)+b3)
#L3_drop = tf.nn.dropout(L3,keep_prob)
prediction = tf.nn.softmax(tf.matmul(L2_drop,W3)+b3) #W4 = tf.Variable(tf.truncated_normal([1000,10],stddev=0.1))
#b4 = tf.Variable(tf.zeros([10])+0.1)
#prediction = tf.nn.softmax(tf.matmul(L3_drop,W4)+b4) #二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
#交叉熵
#loss值最小的时候准确率最高
#loss = tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
#train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#训练
train_step = tf.train.AdamOptimizer(lr).minimize(loss) #初始化变量
init = tf.global_variables_initializer() #结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#
with tf.Session() as sess:
sess.run(init)
for epoch in range(30):
sess.run(tf.assign(lr,0.001*(0.95 ** epoch)))
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) #测试准确率
#test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
#train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images,y:mnist.train.labels,keep_prob:1.0})
learning_rate = sess.run(lr)
test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print("Iter: "+str(epoch)+" ,Testing Accuracy "+str(test_acc)+" Train : "+str(learning_rate))
####运行效果
Extracting F:\TensorflowProject\MNIST_data\train-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\train-labels-idx1-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-images-idx3-ubyte.gz
Extracting F:\TensorflowProject\MNIST_data\t10k-labels-idx1-ubyte.gz
Iter: 0 ,Testing Accuracy 0.9509 Train : 0.001
Iter: 1 ,Testing Accuracy 0.9622 Train : 0.00095
Iter: 2 ,Testing Accuracy 0.9669 Train : 0.0009025
Iter: 3 ,Testing Accuracy 0.9691 Train : 0.000857375
Iter: 4 ,Testing Accuracy 0.9725 Train : 0.000814506
Iter: 5 ,Testing Accuracy 0.9748 Train : 0.000773781
Iter: 6 ,Testing Accuracy 0.9752 Train : 0.000735092
Iter: 7 ,Testing Accuracy 0.9769 Train : 0.000698337
Iter: 8 ,Testing Accuracy 0.9778 Train : 0.00066342
Iter: 9 ,Testing Accuracy 0.9779 Train : 0.000630249
Iter: 10 ,Testing Accuracy 0.9777 Train : 0.000598737
Iter: 11 ,Testing Accuracy 0.9785 Train : 0.0005688
Iter: 12 ,Testing Accuracy 0.98 Train : 0.00054036
Iter: 13 ,Testing Accuracy 0.9798 Train : 0.000513342
Iter: 14 ,Testing Accuracy 0.9796 Train : 0.000487675
Iter: 15 ,Testing Accuracy 0.9801 Train : 0.000463291
Iter: 16 ,Testing Accuracy 0.9805 Train : 0.000440127
Iter: 17 ,Testing Accuracy 0.9803 Train : 0.00041812
Iter: 18 ,Testing Accuracy 0.9808 Train : 0.000397214
Iter: 19 ,Testing Accuracy 0.9799 Train : 0.000377354
Iter: 20 ,Testing Accuracy 0.9798 Train : 0.000358486
Iter: 21 ,Testing Accuracy 0.9802 Train : 0.000340562
Iter: 22 ,Testing Accuracy 0.9812 Train : 0.000323534
Iter: 23 ,Testing Accuracy 0.9813 Train : 0.000307357
Iter: 24 ,Testing Accuracy 0.9816 Train : 0.000291989
Iter: 25 ,Testing Accuracy 0.9798 Train : 0.00027739
Iter: 26 ,Testing Accuracy 0.9822 Train : 0.00026352
Iter: 27 ,Testing Accuracy 0.9816 Train : 0.000250344
Iter: 28 ,Testing Accuracy 0.9822 Train : 0.000237827
Iter: 29 ,Testing Accuracy 0.9811 Train : 0.000225936
tensorflow应用于手写数字识别(第二版)的更多相关文章
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
- Tensorflow之MNIST手写数字识别:分类问题(1)
一.MNIST数据集读取 one hot 独热编码独热编码是一种稀疏向量,其中:一个向量设为1,其他元素均设为0.独热编码常用于表示拥有有限个可能值的字符串或标识符优点: 1.将离散特征的取值扩展 ...
- Tensorflow实现MNIST手写数字识别
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...
- TensorFlow 卷积神经网络手写数字识别数据集介绍
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...
- TensorFlow(四):手写数字识别
一:数据集 采用MNIST数据集:-->官网 数据集被分成两部分:60000行的训练数据集和10000行的测试数据集. 其中每一张图片包含28*28个像素,我们把这个数组展开成一个向量,长度为2 ...
- Tensorflow之MNIST手写数字识别:分类问题(2)
整体代码: #数据读取 import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from tensorfl ...
- TensorFlow(五):手写数字识别加强版
# 该版本的最终识别准确率达到98%以上 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_d ...
随机推荐
- 使用自己定义的DIV的滚动条
基本思路: 让DIV浮动起来,利用postion:fixed/absolute,设定height:100% var $card=$("#cardDetail"); $ca ...
- 域名配置DNS解析A记录,映射到主机
有很多域名的供应商,随便选,哪个便宜用哪个.godaddy一直支持支付宝,不用visa,虽然它是国外的. 我用的是godaddy,这两年有中文版的了,虽然它有了中文版,但是比以前的英文版还要慢. 进入 ...
- CodeForces - 869A The Artful Expedient
题意:有两个序列X和Y,各含n个数,这2n个数互不相同,若满足xi^yj的结果在序列X内或序列Y内的(xi,yj)对数为偶数,则输出"Karen",否则输出"Koyomi ...
- OS、浏览器排名:Win10狂飙、Chrome逆天
根据 Netmarketshare公布的最新数据,2019年7月,Windows 10系统市场份额获得显著增长,市场份额创下新高:Windows 7则进一步衰退,份额下滑高达3.6%,这也是其历史上最 ...
- sslopen RSA加解密
一. 原理概念 OpenSSL定义: OpenSSL是为网络通信提供安全及数据完整性的一种安全协议,囊括了主要的密码算法.常用的密钥和证书封装管理功能以及SSL协议,并提供了丰富的应用程序供测试或其 ...
- linux 域名
Linux 安装好后,其默认的主机名是 localhost. 1.修改 /etc/sysconfig/network 配置文件 vi /etc/sysconfig/network 修改HOST ...
- WARN No appenders could be found for logger 。。。。
对于类似与标题的警告信息,一般来说是环境在没有加载log4j的配置文件之前就读取了log4j的包. 解决方法就是先加载log4j的配置文件,然后再加载log4j的包. 另一个解决方案就是移除log4j ...
- Font Awesome可缩放的矢量图标
我感觉图标还行~~~这里是我修改过的,自己根据需要修改即可~~ 网址: http://fontawesome.dashgame.com/ 使用: <link rel="styleshe ...
- mysql 分组查询入门
- WC2020 联训 #19 矩阵
好不容易自己切一道题 链接 Description 在一个 \(n×(n+1)\) 的棋盘上放棋子, \(n\) 行中每行都恰好有两枚棋子,并且 \(n+1\) 列中每列都至多有两枚棋子,设 \(n= ...