足球游戏论坛数据分析--简单粗暴的K均值聚类
在<<足球游戏论坛数据分析--简单粗暴的贝叶斯>>中尝试了贴标签后,一直觉得结果无法接受, 慢慢回想, 其实选择的算法是错误的,原因有
- 论坛帖子分类并非就是PC/PS/XBOX这么简单
- 即使是作者自己贴的标签,也存在挂羊头的可能性
既然没法简单的给帖子分类,那么就尝试一下聚类算法看看有没有发现:
#事先已经把分好词的所有文本存成一个文件,没有事先分类
f = codecs.open('forum_all.txt', 'r', 'utf-8')
words_full = f.readlines()
f.close() true_k = 5 #事先预设分成5类 vectorizer = TfidfVectorizer(max_df=0.5, max_features=1000,
min_df=2)
transformer = TfidfTransformer()
td = vectorizer.fit_transform(words_full)
tfidf = transformer.fit_transform(td)
word = np.array(vectorizer.get_feature_names())
km = KMeans(n_clusters=true_ke, init='k-means++', max_iter=200, n_init=1)
km.fit(td)
print(u"Silhouette Coefficient(轮廓系数): %0.3f"
% metrics.silhouette_score(td, km.labels_, sample_size=5000))
order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_ke): #输出每个分类头10个特征词
for ind in order_centroids[i, :10]:
print ' %s' % terms[ind],
print ''
运行结果
Silhouette Coefficient(轮廓系数): 0.137
Cluster 0: 1634 posts
显卡 识别 独立 安装 如何 方法 教程 最后 破解版 reloaded
Cluster 1: 4388 posts
2014 evolution soccer 推荐 pro 论坛 首发 dlc3 下载 破解版
Cluster 2: 1677 posts
汇总 资源 dlc6 22 10 更新 pes2014 分享 谢谢 支持
Cluster 3: 7872 posts
wecn 发布 正式 pes2016 patch v2 简体中文 汉化 v1 补丁
Cluster 4: 11287 posts
pes2014 疑难解答 补丁 更新 球员 10 球场 分享 pes2016 谢谢
从这个分类结果来看,我抓取的论坛板块主要讨论的是:
- 能/爽玩游戏的电脑配置, 即PC版游戏
- "你懂的"游戏用户还是不少,正版化依然任重而道远
- 过半数的讨论(分类3和4)是游戏的各路补丁,老司机都知道,在版权问题这个点上,FIFA无敌
- 颇为意外的是, 2014/2016竟然是热门版本, 2015毫无存在感
- 我现在有点怀疑我的爬虫花了大量时间在扒PC板块的帖子 -_-b
PS, 分类数5其实只是个随便定下的值. 之所以最终选5, 只是在测试了从3到12的分类后, 发现轮廓系数在5开始步入稳定状态,提升不大.
最后,附上个特征向量经降维后作的分类散点图
足球游戏论坛数据分析--简单粗暴的K均值聚类的更多相关文章
- 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...
- 【转】算法杂货铺——k均值聚类(K-means)
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...
- 机器学习理论与实战(十)K均值聚类和二分K均值聚类
接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...
- K均值聚类
聚类(cluster)与分类的不同之处在于, 分类算法训练过程中样本所属的分类是已知的属监督学习. 而聚类算法不需要带有分类的训练数据,而是根据样本特征的相似性将其分为几类,又称为无监督分类. K均值 ...
- 探索sklearn | K均值聚类
1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...
- 机器学习之K均值聚类
聚类的核心概念是相似度或距离,有很多相似度或距离的方法,比如欧式距离.马氏距离.相关系数.余弦定理.层次聚类和K均值聚类等 1. K均值聚类思想 K均值聚类的基本思想是,通过迭代的方法寻找K个 ...
- k均值聚类算法原理和(TensorFlow)实现
顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...
- 聚类之K均值聚类和EM算法
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means) ...
随机推荐
- 如何用easyui+JAVA 实现动态拼凑datagrid表格
先给大家看一看效果,最近一段时间都在研究这个东西. 如果我把日期间隔选宽呢?比如5月日到5月5日?下面给大家看看效果,不用担心哦 看到了吧,哈哈,这个日期都是动态生成的,下面就来跟大家分享一下这个的实 ...
- 6.Struts2简单类型数据的接受
简单类型数据的接收 在Action类中定义与请求参数同名的属性, 即,要定义该属性的set方法,便能够使struts2自动接收请求参数并赋予同名属性. 简单类型数据的接受举例: 新建工程项目,名称为: ...
- spring-boot - demo
当我发现把最初的一个demo整的面目全非的时候,突然想要找一个简单的demo做测试,发现与其在原来的上面该,还不如新建一个demo. 官方入门:http://projects.spring.io/sp ...
- mysql创建定时执行存储过程任务
sql语法很多,是一门完整语言.这里仅仅实现一个功能,不做深入研究. 目标:定时更新表或者清空表. 案例:曾经做过定时清空位置信息表的任务.(然而,当时并未考虑服务器挂掉后的情况) 本次测试:每5s更 ...
- Linux打包与压缩及tar命令详解
打包和压缩 在linux中,打包和压缩可以说是两个不同的概念,弄清这两个概念对于我们理解复杂的文件后缀有非常大的帮助 打包 将若干个文件和目录打包在一起变成一个大的文件,这时只是简单的打包,所以一 ...
- 浅谈web网站架构演变过程
前言 我们以javaweb为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变. 该系统具备的功能: 用户模块:用户注册和管理 商品模块:商品展示和管理 交易模块:创建交易和管理 阶 ...
- 面积(area)
题目描述 编程计算由"*"号围成的下列图形的面积.面积计算方法是统计*号所围成的闭合曲线中点的数目.如图所示,在10*10的二维数组中,“*”围住了15个点,因此面积为15. 0 ...
- 【MVC拾遗】MVC的单元测试简单学习总结
关于测试的必要性什么的已经在 重构与测试 里扯过了.倒也没必要说,写的代码多了自然就明白这个东西重要性. 当时说了坐等被推动去学习单元测试来着,然而等着被人推动的结果就是根本就没人来推你.o(∩_∩) ...
- 背水一战 Windows 10 (19) - 绑定: TemplateBinding 绑定, 与 RelativeSource 绑定, 与 StaticResource 绑定
[源码下载] 背水一战 Windows 10 (19) - 绑定: TemplateBinding 绑定, 与 RelativeSource 绑定, 与 StaticResource 绑定 作者:we ...
- 【C#】委托-Delegate
C# 委托(Delegate) C# 中的委托(Delegate)类似于 C 或 C++ 中函数的指针.委托(Delegate) 是存有对某个方法的引用的一种引用类型变量.引用可在运行时被改变. 委托 ...