bzoj1432_[ZJOI2009]Function
题目描述
有n 个连续函数fi (x),其中1 ≤ i ≤ n。对于任何两个函数fi (x) 和fj (x),(i != j),恰好存在一个x 使得fi (x) = fj (x),并且存在无穷多的x 使得fi (x) < fj (x)。对于任何i; j; k,满足1 ≤ i < j < k ≤ n,则不存在x 使得fi (x) = fj (x) = fk (x)。
如上左图就是3 个满足条件的函数,最左边从下往上依次为f1; f2; f3。右图中红色部分是这整个函数图像的最低层,我们称它为第一层。同理绿色部分称为第二层,蓝色部分称为第三层。注意到,右图中第一层左边一段属于f1,中间属于f2,最后属于f3。而第二层左边属于f2,接下来一段属于f1,再接下来一段属于f3,最后属于f2。因此,我们称第一层分为了三段,第二层分为了四段。同理第三层只分为了两段。求满足前面条件的n 个函数,第k 层最少能由多少段组成。
输入输出格式
输入格式
一行两个整数n; k。
输出公式
一行一个整数,表示n 个函数第k 层最少能由多少段组成。
样例
INPUT
1 1
OUTPUT
1
HINT
SOLUTION
(#`O′)喂这样例也太水了点吧。
感谢zzr的友情支持。
推规律:自己多画几个图就出来啦(最好画到\(n=5\)以上吧,不然看不出啥规律),注意一下可以对称翻转整个图形即可。
数学证明:
首先,我们要求的是且仅是\(n\)条线,分出的第\(k\)层的最优解,所以,若能使我们的\(1~n/2\)层有最优解,由于对称性,将整个图形翻转过来之后,我们的\(n/2~n\)层一样也可以有最优解。
然后有一个特判:\(n=1\)时,\(ans=1\)
接下来我们要找的就是上半部分(也可以是下半部分,反正是某半边就可以了对吧)的最优解的求得方法。
数学归纳法证明:
[Warning]其实我并不太熟悉数学归纳法,如果有dalao对这篇题解有问题提出,欢迎一起讨论qwq但这好像姑且算个数学归纳法吧
我们首先可知在\(\forall n\in N_+(n\neq1)\)中,\(k=1时\)一定有\(ans=2\)
\(k>1\)时,对于\(k-1\)层,我们假使结论\(ans=2*(k-1)\)成立,
我们第\(k-1\)层现有的\(2*(k-1)\)段的每一段向原延伸方向延伸直至碰到下一个交点为止,于是得到了新的\(2*(k-1)\)段,而我们又知道,一个交点涉及的的有且只有两条直线,而易得我们每一层的两端必定是由无限远延伸来的射线,因为出现过的直线的线段就是由一个端点延伸而来,故这两条射线所在的直线应该是第一次出现,不能包含在原有的\(2*(k-1)\)段里,所以可以得出,对于第\(k\)层,我们有\(ans=2*k\)
命题得证。
#include <cstdio>
#include <iostream>
using namespace std;
int main(){
int n,k;
scanf("%d%d",&n,&k);
if (n==1) {puts("1");return 0;}
printf("%d\n",min(k*2,2*(n-k+1)));
return 0;
}
bzoj1432_[ZJOI2009]Function的更多相关文章
- BZOJ 1432: [ZJOI2009]Function
1432: [ZJOI2009]Function Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1046 Solved: 765[Submit][Sta ...
- 1432: [ZJOI2009]Function
1432: [ZJOI2009]Function Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 710 Solved: 528[Submit][Stat ...
- BZOJ 1432: [ZJOI2009]Function(新生必做的水题)
1432: [ZJOI2009]Function Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1205 Solved: 895[Submit][Sta ...
- 【BZOJ1432】[ZJOI2009]Function(找规律)
[BZOJ1432][ZJOI2009]Function(找规律) 题面 BZOJ 洛谷 题解 这...找找规律吧. #include<iostream> using namespace ...
- bzoj千题计划138:bzoj1432: [ZJOI2009]Function
http://www.lydsy.com/JudgeOnline/problem.php?id=1432 http://blog.sina.com.cn/s/blog_86942b1401014bd2 ...
- bzoj 1432 [ZJOI2009]Function 思想
[bzoj1432][ZJOI2009]Function Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sampl ...
- BZOJ1432 [ZJOI2009]Function
Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1 H ...
- bzoj 1432 [ZJOI2009]Function(找规律)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1432 [思路] 找(cha)规(ti)律(jie) 分析戳这儿 click here ...
- 【构造】Bzoj1432[ZJOI2009]Function
Description Input 一行两个整数n; k. Output 一行一个整数,表示n 个函数第k 层最少能由多少段组成. Sample Input 1 1 Sample Output 1 ...
随机推荐
- MyBatis从入门到精通(第2章):MyBatis XML方式的基本用法【insert用法、update用法、delete用法】
2.4 insert 用法 2.4.1 简单的 insert方法 在接口 UserMapper.java 中添加如下方法. /** * 新增用户 * @param sysUser * @retur ...
- JQuery局部刷新与全页面刷新
局部刷新: 这个方法就多了去了,常见的有以下几种: $.get方法,$.post方法,$.getJson方法,$.ajax方法如下 前两种使用方法基本上一样 $.get(”Default.php”, ...
- Tkinter控件Canvas
网上关于tkinter的canvas组件系统的中文教程很少,英文教程未知.要么是专业的参考文档,没有丰富的实例,要么在不同的论坛,博客平台零零散散存在一些canvas的例子,这给学习canvas带来了 ...
- 测试浏览器是否支持JavaScript脚本
如果用户不能确定浏览器是否支持JavaScript脚本,那么可以应用HTML提供的注释符号进行验证.HTML注释符号是以 <-- 开始以 --> 结束的.如果在此注释符号内编写 JavaS ...
- android weight
- bzoj1396识别子串(SAM+线段树)
复习SAM板子啦!考前刷水有益身心健康当然这不是板子题/水题…… 很容易发现只在i位置出现的串一定是个前缀串.那么对答案的贡献分成两部分:一部分是len[x]-fa~len[x]的这部分贡献会是r-l ...
- springboot多数据源+jta事务管理配置
1.创建一个maven项目,导入相关配置: <?xml version="1.0" encoding="UTF-8"?> <project x ...
- 2019-2020-1 20199324《Linux内核原理与分析》第八周作业
第七章 可执行程序工作原理 一.ELF目标文件格式 目标文件:ABI,应用程序二进制接口,是编译器生成的文件. ELF:可执行的和可链接的格式,是一个目标文件格式的标准.三种类型是: 可重定位文件:L ...
- yum pip
方式1(yum安装):1.首先安装epel扩展源:[root@localhost ~]# yum -y install epel-release如果没有安装epel扩展源而直接安装python-pi ...
- Forest Program(2019ccpc秦皇岛F)
题:http://acm.hdu.edu.cn/showproblem.php?pid=6736 题意:删掉一些边使得图不存在点双,求方案数. 分析:若一条边不属于点双,那么这条边有删和不删俩种选择, ...