1 多元线性回归

更一般的情况,数据集 \(D\) 的样本由 \(d\) 个属性描述,此时我们试图学得

\[f(\boldsymbol{x}_i) = \boldsymbol{w}^T\boldsymbol{x}_i+b \text{,使得} f(\boldsymbol{x}_i) \simeq y_i
\]

称为多元线性回归multivariate linear regression)或多变量线性回归

类似的,使用最小二乘法估计 \(\boldsymbol{w}\) 和 \(b\)。

由 \(f(\boldsymbol{x}_i) = \boldsymbol{w}^T\boldsymbol{x}_i+b\) 知:

\[f(\boldsymbol{x}_1) = w_1x_{11} + w_2x_{12} + ... + w_dx_{1d} + b \\
f(\boldsymbol{x}_2) = w_1x_{21} + w_2x_{22} + ... + w_dx_{2d} + b \\
... ... \\
f(\boldsymbol{x}_m) = w_1x_{m1} + w_2x_{m2} + ... + w_dx_{md} + b \\
\]

我们记

\[\hat{\boldsymbol{w}} = (\boldsymbol{w};b) = \begin{pmatrix}w_1\\w_2\\ \vdots \\w_d\\b\end{pmatrix}
\]

\[\boldsymbol{X} =\begin{pmatrix}
x_{11} & x_{12} & \cdots & x_{1d} & 1 \\
x_{21} & x_{22} & \cdots & x_{2d} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{md} & 1
\end{pmatrix}
=\begin{pmatrix}
\boldsymbol{x}_1^T & 1 \\
\boldsymbol{x}_2^T & 1 \\
\vdots & \vdots \\
\boldsymbol{x}_m^T & 1
\end{pmatrix}
\]

\[\boldsymbol{y} = (y_1;y_2;\cdots ;y_m) = \begin{pmatrix}y_1\\y_2\\ \vdots \\y_d\end{pmatrix}
\]

可得:

\[\boldsymbol{y} = \boldsymbol{X}\hat{\boldsymbol{w}} \tag{1.1}
\]

类似于前篇博客的式子 (2.3) 有:

\[\hat{\boldsymbol{w}}^* = \underset{\hat{\boldsymbol{w}}}{arg\ min} (\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{w}})^T(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{w}})
\tag{1.2}
\]

令 \(E_{\hat{\boldsymbol{w}}} = (\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{w}})^T(\boldsymbol{y}-\boldsymbol{X}\hat{\boldsymbol{w}})\),对 \(\hat{\boldsymbol{w}}\) 求导得:

\[\cfrac{\partial E_{\hat{\boldsymbol w}}}{\partial \hat{\boldsymbol w}}=2\mathbf{X}^T(\mathbf{X}\hat{\boldsymbol w}-\boldsymbol{y})
\tag{1.3}
\]

令上式为零,得到 \(\hat{\boldsymbol{w}}\) 最优解的闭式解。

当 \(\boldsymbol{X}^T\boldsymbol{X}\) 为满秩矩阵(full-rank matrix)或正定矩阵(positive define matrix)时,令式 (1.2) 为零可得:

\[\hat{\boldsymbol{w}}^* = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} \tag{1.4}
\]

令 \(\hat{\boldsymbol{x}_i} = (\boldsymbol{x}_i, 1)\) 得到最终学得的多元线性回归模型为:

\[f(\hat{\boldsymbol{x}}_i) = \hat{\boldsymbol{x}_i}^T(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} \tag{1.5}
\]

当 \(\boldsymbol{X}^T\boldsymbol{X}\) 不是满秩矩阵时,可解出多个 \(\hat{\boldsymbol{w}}\) 使得均方误差最小。选择哪个解输出取决于学习算法的归纳偏好。常用做法是引入正则化(regularization)项。

2 多元线性回归的Python实现

现有如下数据,我们希望通过分析披萨的直径、辅料数量与价格的线性关系,来预测披萨的价格:

2.1 手动实现

2.1.1 导入必要模块

import numpy as np
import pandas as pd

2.1.2 加载数据

pizza = pd.read_csv("pizza_multi.csv", index_col='Id')
pizza

2.1.3 计算系数

由公式

\[\hat{\boldsymbol{w}}^* = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} \tag{2.11}
\]

可计算出 \(\hat{\boldsymbol{w}}^*\) 的值。

我们将后 5 行数据作为测试集,其他为测试集:

X = pizza.iloc[:-5, :2].values
y = pizza.iloc[:-5, 2].values.reshape((-1, 1))
print(X)
print(y)
[[ 6  2]
[ 8 1]
[10 0]
[14 2]
[18 0]]
[[ 7. ]
[ 9. ]
[13. ]
[17.5]
[18. ]]
ones = np.ones(X.shape[0]).reshape(-1,1)
X = np.hstack((X,ones))
X
array([[ 6.,  2.,  1.],
[ 8., 1., 1.],
[10., 0., 1.],
[14., 2., 1.],
[18., 0., 1.]])
w_ = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y)
w_
array([[1.01041667],
[0.39583333],
[1.1875 ]])

即:

\[\hat{\boldsymbol{w}}^* = (\boldsymbol{w};b) = \begin{pmatrix}w_1\\w_2\\b\end{pmatrix} = \begin{pmatrix}1.01041667\\0.39583333\\1.1875\end{pmatrix}
\]

\[f(\boldsymbol{x}) = 1.01041667x_1 + 0.39583333x_2 + 1.1875
\]

b = w_[-1]
w = w_[:-1]
print(w)
print(b)
[[1.01041667]
[0.39583333]]
[1.1875]

2.1.4 预测

X_test = pizza.iloc[-5:, :2].values
y_test = pizza.iloc[-5:, 2].values.reshape((-1, 1))
print(X_test)
print(y_test)
[[ 8  2]
[ 9 0]
[11 2]
[16 2]
[12 0]]
[[11. ]
[ 8.5]
[15. ]
[18. ]
[11. ]]
y_pred = np.dot(X_test, w) + b
# y_pred = np.dot(np.hstack((X_test, ones)), w_)
print("目标值:\n", y_test)
print("预测值:\n", y_pred)
目标值:
[[11. ]
[ 8.5]
[15. ]
[18. ]
[11. ]]
预测值:
[[10.0625 ]
[10.28125 ]
[13.09375 ]
[18.14583333]
[13.3125 ]]

2.2 使用 sklearn

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
# 读取数据
pizza = pd.read_csv("pizza_multi.csv", index_col='Id')
X = pizza.iloc[:-5, :2].values
y = pizza.iloc[:-5, 2].values.reshape((-1, 1))
X_test = pizza.iloc[-5:, :2].values
y_test = pizza.iloc[-5:, 2].values.reshape((-1, 1))
# 线性拟合
model = LinearRegression()
model.fit(X, y)
# 预测
predictions = model.predict(X_test)
for i, prediction in enumerate(predictions):
print('Predicted: %s, Target: %s' % (prediction, y_test[i]))
Predicted: [10.0625], Target: [11.]
Predicted: [10.28125], Target: [8.5]
Predicted: [13.09375], Target: [15.]
Predicted: [18.14583333], Target: [18.]
Predicted: [13.3125], Target: [11.]
# 模型评估
"""
使用 score 方法可以计算 R方
R方的范围为 [0, 1]
R方越接近 1,说明拟合程度越好
"""
print('R-squared: %.2f' % model.score(X_test, y_test))
R-squared: 0.77

此文原创禁止转载,转载文章请联系博主并注明来源和出处,谢谢!

作者: Raina_RLN https://www.cnblogs.com/raina/

机器学习4- 多元线性回归+Python实现的更多相关文章

  1. 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归

    一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...

  2. 100天搞定机器学习|Day3多元线性回归

    前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也 ...

  3. coursera机器学习笔记-多元线性回归,normal equation

    #对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...

  4. [机器学习Lesson4]多元线性回归

    1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3 ...

  5. 梯度下降法的python代码实现(多元线性回归)

    梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...

  6. 【机器学习】线性回归python实现

    线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的 ...

  7. day-12 python实现简单线性回归和多元线性回归算法

    1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...

  8. 机器学习——Day 3 多元线性回归

    写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...

  9. 机器学习:单元线性回归(python简单实现)

    文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的 ...

随机推荐

  1. tesseract的简单使用

    Tesseract 是一个开源的 OCR 引擎,可以识别多种格式的图像文件并将其转换成文本,最初由 HP 公司开发,后来由 Google 维护.下载地址:https://digi.bib.uni-ma ...

  2. js 数组 方法

    instanceof 检测一个对象是否是数组;(用来对付复杂数据类型;)// 简单数据类型 typeof ;A instanceof B // A是不是B造出来的;例: var arr = [1,2, ...

  3. vscode 对于 md的编写 左侧 大纲 很重要!!

    vscode 对于 md的编写 左侧 大纲 很重要!!

  4. Html网页链接数据库验证账户密码(新手)

    连接代码(其中用到了连接池,不要忘记Jar包.拉入配置文件和工具类): package cn.Wuchuang.Servlet; import org.springframework.jdbc.cor ...

  5. 《Python学习手册 第五版》 -第15章 文档

    本章主要介绍Python中的文档,会通过多种方式来说明,如果查看Python自带文档和其他参考的资料 本章重点内容 1.#注释:源文件文档 2.dir函数:以列表显示对象中可用的属性 3.文档字符串 ...

  6. 第九周Java实验作业

    实验九 异常.断言与日志 实验时间 2018-10-25 1.实验目的与要求 (1) 掌握java异常处理技术: Java的异常处理机制可以控制程序从错误产生的位置转移到能够进行错误处理的位置. Ja ...

  7. 拜托,别再问我什么是 B+ 树了

    前言 每当我们执行某个 SQL 发现很慢时,都会下意识地反应是否加了索引,那么大家是否有想过加了索引为啥会使数据查找更快呢,索引的底层一般又是用什么结构存储的呢,相信大家看了标题已经有答案了,没错!B ...

  8. C#中的9个“黑魔法”与“骚操作”

    C#中的9个"黑魔法"与"骚操作" 我们知道C#是非常先进的语言,因为是它很有远见的"语法糖".这些"语法糖"有时过于好 ...

  9. 阅读了这三篇文章,你也就基本理解了ASP.NET Core MVC框架的工作原理

    <200行代码,7个对象--让你了解ASP.NET Core框架的本质>让很多读者对ASP.NET Core管道有深刻的理解,知道了ASP.NET Core框架针对每个请求的处理流程.在过 ...

  10. 李宏毅老师机器学习课程笔记_ML Lecture 3-1: Gradient Descent

    引言: 这个系列的笔记是台大李宏毅老师机器学习的课程笔记 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML- ...