前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

项目背景

2018年,被称为互联网的寒冬之年。无论大小公司,纷纷走上了裁员之路,还有一些比较惨的,直接关门大吉。2019年上半年,甲骨文裁掉大量35岁左右的程序员,谁也没想到,IT界退休年龄这么早!而内心OS:我的房贷还没还清。。。。

假设你是人力资源总监,你该向谁开刀呢?先回答一下下面的问题。

  • 各部门有多少名员工?
  • 员工总体流失率是多少?
  • 员工平均薪资是多少?
  • 员工平均工作年限是多少?
  • 公司任职时间最久的3名员工是谁?
  • 员工整体满意度如何?

数据处理

import pandas as pd
data = pd.read_excel(r'c:\Users\Administrator\Desktop\英雄联盟员工信息表.xlsx',index_col = u'工号')
# 访问columns属性,查看列字段
data.columns
# 访问index属性,查看行标记
data.index
# 访问values属性,查看数据集
data.values

# 对元数据集增加一列奖金列,数额为薪资的20%
data[u'奖金'] = data[u'薪资']*0.2
data[u'奖金'].head()
# loc方法,根据索引列访问数据集
idx = ['lol-1','lol-2','lol-3','lol-7']
data.loc[idx]

# 对元数据集增加一列奖金列,数额为薪资的20%
data[u'奖金'] = data[u'薪资']*0.2
data[u'奖金'].head()
# loc方法,根据索引列访问数据集
idx = ['lol-1','lol-2','lol-3','lol-7']
data.loc[idx]

此时,我们在上述结果中发现:寒冰、盖伦是重复数据条,在数据分析过程中,一定要注意重复数据带来的影响,所以我们要进行去重操作。

# 查看重复数据条(bool结果为True代表重复)
data.duplicated()
# 查看有多少条重复数据
data.duplicated().sum() # 结果:2
# 查看重复数据
data[data.duplicated()]
# 删除重复数据条,inplace参数代表是否在元数据集进行删除,True表示是
data.drop_duplicates(inplace=True)
# 再次查看是否全部去重
data.duplicated().sum() # 结果:0,说明数据已经唯一

数据分析

1.各部门有多少名员工?

# 频数统计
data[u'部门'].value_counts()
# ascending = True代表升序展示
data[u'部门'].value_counts(ascending = True)

2.员工总体流失率是多少?

# 频数统计
data[u'状态'].value_counts()
# normalize = True 获得标准化计数结果
data[u'状态'].value_counts(normalize = True)
# 展示出员工总体流失率
rate = data[u'状态'].value_counts(normalize = True)[u'离职']
rate

3.员工平均薪资是多少?

由上图的结果可以看出,平均薪资在16800元,你达到了吗?!允许你去哭一会o(╥﹏╥)o!

4.公司任职时间最久的3名员工是谁?

# describe方法也是常用的一种方法,而且结果更全面。
data[u'工龄'].describe()
# 通过降序排序、切片操作,找到待的最久的三名员工
data[u'工龄'].sort_values(ascending = False)[:3]
ID = data[u'工龄'].sort_values(ascending = False)[:3].index
data.loc[ID]

6.员工整体满意度如何?

data[u'满意度'].head()
# 通过查看满意度前五行发现,不太直观,我们可以用map进行映射,先建立一个映射字典
JobSatisfaction_cat = {
1:'非常满意',
2:'一般般吧',
3:'劳资不爽'
}
data[u'满意度'].map(JobSatisfaction_cat)
# 对元数据集进行满意度映射
data[u'满意度'] = data[u'满意度'].map(JobSatisfaction_cat)
data[u'满意度'].head()

接下来,进行员工整体满意度分析。通过计算可以得出:70%员工都比较认可公司,但仍有30%员工对公司不满意。人力主管以及部门主管需要进一步探究清楚这30%员工的情况,因为不满意是否已经离职?还是存在隐患?是否处于核心岗位等等问题值得我们进一步探究。

data.head()
# 频数统计
data[u'满意度'].value_counts()
# 获得标准化计数结果,考虑到百分比更能说明满意度情况,所以乘100展示
100*data[u'满意度'].value_counts(normalize = True)

Python数据分析帮你清晰的了解整理员工们的工作效率和整体满意度的更多相关文章

  1. python数据分析笔记——数据加载与整理]

    [ python数据分析笔记——数据加载与整理] https://mp.weixin.qq.com/s?__biz=MjM5MDM3Nzg0NA==&mid=2651588899&id ...

  2. python virtual env 使用 jupyter ipython notebook,舒服了, 工作效率翻倍

    话不多说,尊重原作者 知乎链接

  3. Python数据分析笔记

    最近在看Python数据分析这本书,随手记录一下读书笔记. 工作环境 本书中推荐了edm和ipython作为数据分析的环境,我还是刚开始使用这种集成的环境,觉得交互方面,比传统的命令行方式提高了不少. ...

  4. python数据分析中常用的库

    Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性,这里就为大家分享几个不错的数据分析工具,需要的朋友可以参考下 Pyth ...

  5. 总是在起头可是能怎么办呢 Python数据分析

    目录 前言1 第1章准备工作5 本书主要内容5 为什么要使用Python进行数据分析6 重要的Python库7 安装和设置10 社区和研讨会16 使用本书16 致谢18 第2章引言20 来自bit.l ...

  6. python数据分析01准备工作

    第1章 准备工作 1.1 本书的内容 本书讲的是利用Python进行数据控制.处理.整理.分析等方面的具体细节和基本要点.我的目标是介绍Python编程和用于数据处理的库和工具环境,掌握这些,可以让你 ...

  7. 【读书笔记与思考】《python数据分析与挖掘实战》-张良均

    [读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...

  8. Python数据分析基础PDF

    Python数据分析基础(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1ImzS7Sy8TLlTshxcB8RhdA 提取码:6xeu 复制这段内容后打开百度网盘手 ...

  9. KNIME + Python = 数据分析+报表全流程

    Python 数据分析环境 数据分析领域有很多可选方案,例如SPSS傻瓜式分析工具,SAS专业性商业分析工具,R和python这类需要代码编程类的工具.个人选择是python这类,包括pandas,n ...

随机推荐

  1. Chisel3 - Tutorial - Adder4

    https://mp.weixin.qq.com/s/X5EStKor2DU0-vS_wIO-fg   四位加法器.通过FullAdder级联实现.   参考链接: https://github.co ...

  2. Java实现 蓝桥杯VIP 算法训练 -2进制(暴力)

    试题 算法训练 -2进制 问题描述 给出1个十进制整数N,计算出它的-2进制表示. 输入格式 第一行:一个整数N,表示要转换的十进制数. 输出格式 第一行:N的-2进制表示. 样例输入 -13 样例输 ...

  3. (Java实现) 洛谷 P1106 删数问题

    题目描述 键盘输入一个高精度的正整数NN(不超过250250位) ,去掉其中任意kk个数字后剩下的数字按原左右次序将组成一个新的正整数.编程对给定的NN和kk,寻找一种方案使得剩下的数字组成的新数最小 ...

  4. Java实现 蓝桥杯VIP 算法训练 调和数列

    问题描述 输入一个实数x,求最小的n使得,1/2+1/3+1/4+-+1/(n+1)>=x. 输入的实数x保证大于等于0.01,小于等于5.20,并且恰好有两位小数.你的程序要能够处理多组数据, ...

  5. Java实现 LeetCode 189 旋转数组

    189. 旋转数组 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: [1,2,3,4,5,6,7] 和 k = 3 输出: [5,6,7,1,2,3,4] ...

  6. java实现排他平方数

    题目标题: 排它平方数 小明正看着 203879 这个数字发呆. 原来,203879 * 203879 = 41566646641 这有什么神奇呢?仔细观察,203879 是个6位数,并且它的每个数位 ...

  7. Python学习之计算机基础

    计算机基础: (1)计算机俗称电脑,是现代用于高速计算的电子计算器,可以进行数值计算也可以进行逻辑计算,还有存储记忆功能.是能够按照程序运行,自动,高速处理海量数据的现代化智能 电子设备. (2)物理 ...

  8. 死啃了String源码之后

    Java源码之String 说在前面: 为什么看源码: 最好的学习的方式就是模仿,接下来才是创造.而源码就是我们最好的模仿对象,因为写源码的人都不是一般的人,所以用心学习源码,也就可能变成牛逼的人.其 ...

  9. MATLAB实例:多元函数拟合(线性与非线性)

    MATLAB实例:多元函数拟合(线性与非线性) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多请看:随笔分类 - MATLAB作图 之前写过一篇博 ...

  10. 红楼梦 + 写入 MySQL

    import requests import re import pymysql from bs4 import BeautifulSoup conn = pymysql.Connect(host=' ...