GraphicsLab Project 之 Curl Noise

作者:i_dovelemon
日期:2020-04-25
主题:Perlin Noise, Curl Noise, Finite Difference Method
引言
最近在研究流体效果相关的模拟。经过一番调查,发现很多的算法都基于一定的物理原理进行模拟,计算量相对来说都比较高昂。最终寻找到一个基于噪音实现的,可在视觉上模拟流体效果的方法:Curl Noise。题图就是通过 Curl Noise 模拟的流体向量场控制的百万粒子的效果。
背景知识
在讲解什么是 Curl Noise 之前,我们需要了解一些相关背景知识。
向量场(Vector Field)
一个2D 或者 3D 的向量场,表示的是赋予空间中任意点一个 2D 或者 3D 向量的函数。公式表示如下所示:
$\vec{F}\left(x,y \right)=P\left(x,y\right)\vec{i}+Q\left(x,y\right)\vec{j}$
$\vec{F}\left(x,y,z \right)=P\left(x,y,z\right)\vec{i}+Q\left(x,y,z\right)\vec{j}+R\left(x,y,z\right)\vec{k}$
其中,$P$,$Q$,$R$ 各表示一个标量函数,即它们的返回值是一个标量;$\vec{i}$,$\vec{j}$,$\vec{k}$ 各表示一个基向量。(参考文献[1])
上面数学的解释大家可能不熟悉,但是很多人或多或少的都看过向量场的图片形式,如下所示:

散度和旋度(Curl and Divergence)
首先,我们来定义一个 $\nabla$ 操作,如下所示:
$\nabla=\frac{\partial }{\partial x}\vec{i}+\frac{\partial }{\partial y}\vec{j}+\frac{\partial }{\partial z}\vec{k}$
其中$\partial$表示的是偏导数符号,不熟悉的读者可以去复习下微积分或者参考文献[2]。有了这个操作符之后,我们定义旋度为:
$curl\vec{F}=\nabla\times\vec{F}=(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z},\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x},\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})$
其中$\times$为叉积操作符(参考文献[3])。
有了旋度之后,我们再来定义散度,同样的,公式如下所示:
$div\vec{F}=\nabla\cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$
特别的,散度和旋度之间有如下的一个关系:
$div(curl\vec{F})=0$
以上内容,参考文献[4]。
根据上面的公式,我们可以知道,对于一个向量场的旋度场,它的散度为 0,即它是一个无源场(Divergence-Free)。而一个散度为 0 的向量场,表示这个场是不可压缩的流体,这对日常所见的流体来说是一个很重要的视觉性质,所以据此我们可以使用一个场的旋度场来模拟流体效果。
Curl Noise
所谓 Curl Noise,即是对一个随机向量场,进行 Curl 操作之后得到的新场。因为满足散度为 0 的特性,所以这个场看上去就具有流体的视觉特性。如果用这个场作为速度去控制粒子,即可得到开头视频中流动的效果。
2D Curl Noise
前面我们说过,需要一个随机的向量场。这里我们使用 Perlin Noise 来进行模拟,关于 Perlin Noise 网上一堆资料,这里就不再赘述。
我们假设 Perlin Noise 的函数为:
$N(x,y)$
它的返回值是一个标量值。然后据此建立一个新的向量场:
$\vec{F}(x,y) = (N(x,y), N(x,y))$
然后对这个新的向量场进行 Curl 操作,即可得到旋度场。
前面只说过 3D 情况下的 Curl 操作是怎么样的,这里给出 2D 版本的 Curl 操作:
$curl\vec{F}(x, y) = (\frac{\partial N(x,y)}{\partial y}, -\frac{\partial N(x,y)}{\partial x})$
这里就只剩下了最后一个问题,那就是形如 $\frac{\partial N(x,y)}{\partial x}$ 这样的偏导数,该怎么计算。我们这里使用一个名为有限差分的方法(Finite Difference Method)来近似求解。
Finite Difference Method
根据文献[2]中对于偏导数的描述,我们知道 $\frac{\partial N(x,y)}{\partial x}$ 只是一种表达方式,它的精确表示方法为:
$\frac{\partial N(x,y)}{\partial x}= N_x(x,y) = \lim_{h\to0}{\frac{N(x + h,y)-N(x,y)}{h}}$
而后面极限的表达方式则给了我们近似计算这个偏导数的方法,只要给定一个较小的 $h$ 值,就能够近似的得到偏导数的结果。而这种计算方法即为:有限差分方法(Finite Difference Method)。
除了上面的极限表示方法之外,还有另外一种极限表示方法,如下所示:
$\frac{\partial N(x,y)}{\partial x}= N_x(x,y) = \lim_{h\to0}{\frac{N(x,y)-N(x-h,y)}{h}}$
这两种差分方法分别称之为前向差分(Forward Difference)和逆向差分(Backward Difference)方法。我这里主要使用逆向差分方法。
有了计算偏导数的方法之后,我们就可以实际带到 2D Curl 操作的公式进行计算,如下是计算 2D Curl Noise 的伪代码:
vec2 computeCurl(float x, float y)
{
float h = 0.0001f;
float n, n1, n2, a, b; n = N(x, y);
n1 = N(x, y - h);
n2 = N(x - h, y);
a = (n - n1) / h;
b = (n - n2) / h; return vec2(a, -b);
}
知道怎么计算 2D Curl Noise 之后,我们用计算出来的 Curl Noise 作为速度场去控制粒子进行运动,如下是 2D Curl Noise 控制粒子运动的效果:
3D Curl Noise
有了前面 2D Curl Noise 的实现,如法炮制的实现 3D Curl Noise 的推导。
3D Perlin Noise 函数定义为:
$N(x,y,z)$
以此构造出来的 3D 向量场为:
$\vec{F}(x,y,z)=(N(x,y,z),N(x,y,z)N(x,y,z))$
对这个场进行 Curl 操作,得到:
$curl\vec{F}=(\frac{\partial N(x,y,z)}{\partial y}-\frac{\partial N(x,y,z)}{\partial z},\frac{\partial N(x,y,z)}{\partial z}-\frac{\partial N(x,y,z)}{\partial x},\frac{\partial N(x,y,z)}{\partial x}-\frac{\partial N(x,y,z)}{\partial y})$
据此,给出计算 3D Curl Noise 的伪代码:
vec3 computeCurl(float x, float y)
{
vec3 curl;
float h = 0.0001f;
float n, n1, a, b; n = N(x, y, z); n1 = N(x, y - h, z);
a = (n - n1) / h; n1 = N(x, y, z - h);
b = (n - n1) / h;
curl.x = a - b; n1 = N(x, y, z - h);
a = (n - n1) / h; n1 = N(x - h, y, z);
b = (n - n1) / h;
curl.y = a - b; n1 = N(x - h, y, z);
a = (n - n1) / h; n1 = N(x, y - h, z);
b = (n - n1) / h;
curl.z = a - b; return curl;
}
以下是根据得到的 3D Curl Noise,并一次控制粒子进行运动的效果:
结论
Curl Noise 在游戏中有大量的运用,Unity 的粒子系统的 Noise Module 就内置了 Curl Noise 的实现。作为游戏开发的人员,很有必要了解下这个技术的原理,便于在实际开发中灵活运用。本文的主要原理来自于参考文献[5],感兴趣的可以深入去了解。
源代码已上传 Github:https://github.com/idovelemon/UnityProj/tree/master/CurlNoise 。
参考文献
[1] Section 5-1 : Vector Field
[2] Section 2-2:Partial Derivatives
[4] Section 6-1:Curl And Divergence
[5] Curl-Noise for Procedural Fluid Flow
GraphicsLab Project 之 Curl Noise的更多相关文章
- GraphicsLab Project之辉光(Glare,Glow)效果 【转】
作者:i_dovelemon 日期:2016 / 07 / 02 来源:CSDN 主题:Render to Texture, Post process, Glare, Glow, Multi-pass ...
- GraphicsLab Project学习项目
作者:i_dovelemon 日期:2016 / 05 / 30 主题:3D,Graphics 引言 进公司以来,主要在学习的就是如何保证代码的质量,以前热爱的图形学也放置了.但是,作为游戏程序员,特 ...
- GraphicsLab Project之Diffuse Irradiance Environment Map
作者:i_dovelemon 日期:2020-01-04 主题:Rendering Equation,Irradiance Environment Map,Spherical Harmonic 引言 ...
- 数字图像处理实验(11):PROJECT 05-02,Noise Reduction Using a Median Filter 标签: 图像处理MATLAB 2017-05-26 23:
实验要求: Objective: To understand the non-linearity of median filtering and its noise suppressing abili ...
- GraphicsLab Project 之 Screen Space Planar Reflection
作者:i_dovelemon 日期:2020-06-23 主题:Screen Space Planar Reflection, Compute Shader 引言 前段时间,同事发来一篇讲述特化版本的 ...
- GraphicsLab Project之再谈Shadow Map
作者:i_dovelemon 日期:2019-06-07 主题:Shadow Map(SM), Percentage Closer Filtering(PCF), Variance Shadow Ma ...
- 用体渲染的方法在Unity中渲染云(18/4/4更新)
github: https://github.com/yangrc1234/VolumeCloud 更新的内容在底部 最近在知乎上看到一篇文章讲云层的渲染(https://zhuanlan.zhihu ...
- libcurl教程
名称 libcurl 的编程教程 目标 本文档介绍使用libcurl编程的一般原则和一些基本方法.本文主要是介绍 c 语言的调用接口,同时也可能很好的适用于其他类 c 语言的接口. 跨平台的可移植代码 ...
- cocos2dx libcurl
转自:http://www.himigame.com/curl-libcurl/878.html 本篇介绍使用libcurl编程的一般原则和一些基本方法.本文主要是介绍 c 语言的调用接口,同时也可能 ...
随机推荐
- Springcloud 整合Hystrix 断路器,支持Feign客户端调用
1,在这篇博文中,已经大致说过了Springcloud服务保护框架 Hystrix在服务隔离,服务降级,以及服务熔断中的使用 https://www.cnblogs.com/pickKnow/p/11 ...
- Feign客户端的重构,新建springcloud架构
1,在上篇博文中,已经实现了feign 客户端来远程调用接口的功能,因为feign 客户端在springcloud 开发过程中是比较常用的方式 https://www.cnblogs.com/pick ...
- Python——NumPy库入门
1.数据的纬度 维度:一组数据的组织形式 1.1 一维数据 一维数据由对等关系的有序或无序数据构成,采用线性方式组织 ,对应列表.数组和集合等概念 列表:数据类型可以不同 ,如 3.1413, 'pi ...
- python——os平台编程
一.os平台编程需求 1.目录文件的操作 对系统目录,文件的操作方法 2.程序的定时执行 3.可执行程序的转换 python程序向可执行程序的转换 二.目录文件操作 root:当前目录: dirs:当 ...
- Flutter 不可错过的学习资源
老孟导读:今天给大家分享一下我在学习Flutter的过程中整理的资料,这些文章或者开源项目都是精挑细选的,希望可以帮助到到家.另外相关资料会在Github一直更新,欢迎大家fork,如果喜欢的话给个小 ...
- .NET(C#)实现桌面背景切换(控制台应用程序,windows服务版的未实现成功)
AdvancedBackgroundJimmy.Program.cs using AdvancedBackground; using Microsoft.Win32; using System; us ...
- 1012 The Best Rank (25 分)
To evaluate the performance of our first year CS majored students, we consider their grades of three ...
- IIS 组成
HTTP.sys http.sys 侦听来自网络的 HTTP 请求,将它们传递到 IIS 并返回响应. 它是一种可以从命令行停止和启动的服务. "NET STOP HTT ...
- Python 参数使用总结
Python 中参数的传递非常灵活,不太容易记住理解,特整理如下备忘: 普通参数 即按照函数所需的参数,对应位置传递对应的值,可以对应 Java 中的普通参数 def max(a, b): if a ...
- Centos6升级内核方法
docker需要内核在3.0以上,如果centos6上需要安装docker的话需要先将内核进行升级 工具/原料 Centos6.5_x64 方法/步骤 操作系统为centos6.5,内核为 ...