小白学PyTorch 动态图与静态图的浅显理解
文章来自公众号【机器学习炼丹术】,回复“炼丹”即可获得海量学习资料哦!
本章节缕一缕PyTorch的动态图机制与Tensorflow的静态图机制(最新版的TF也支持动态图了似乎)。
1 动态图的初步推导
- 计算图是用来描述运算的有向无环图
- 计算图有两个主要元素:结点(Node)和边(Edge);
- 结点表示数据 ,如向量、矩阵、张量;
- 边表示运算 ,如加减乘除卷积等;
上图是用计算图表示:
\(y=(x+w)∗(w+1)y=(x+w)∗(w+1)\)
其中呢,\(a=x+w\) ,\(b=w+1\) , \(y=a∗b\). (a和b是类似于中间变量的那种感觉。)
Pytorch在计算的时候,就会把计算过程用上面那样的动态图存储起来。现在我们计算一下y关于w的梯度:
\(\frac{\partial y}{\partial w} = \frac{\partial y}{\partial a} \frac{\partial a}{\partial w} + \frac{\partial y}{\partial b} \frac{\partial b}{\partial w}\)
\(=2\times w + x + 1=5\)
(上面的计算中,w=1,x=2)
现在我们用Pytorch的代码来实现这个过程:
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)
a = w+x
b = w+1
y = a*b
y.backward()
print(w.grad)
得到的结果:
2 动态图的叶子节点
这个图中的叶子节点,是w和x,是整个计算图的根基。之所以用叶子节点的概念,是为了减少内存,在反向传播结束之后,非叶子节点的梯度会被释放掉 , 我们依然用上面的例子解释:
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)
a = w+x
b = w+1
y = a*b
y.backward()
print(w.is_leaf,x.is_leaf,a.is_leaf,b.is_leaf,y.is_leaf)
print(w.grad,x.grad,a.grad,b.grad,y.grad)
运行结果是:
可以看到只有x和w是叶子节点,然后反向传播计算完梯度后(.backward()之后),只有叶子节点的梯度保存下来了。
当然也可以通过.retain_grad()来保留非任意节点的梯度值。
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)
a = w+x
a.retain_grad()
b = w+1
y = a*b
y.backward()
print(w.is_leaf,x.is_leaf,a.is_leaf,b.is_leaf,y.is_leaf)
print(w.grad,x.grad,a.grad,b.grad,y.grad)
运行结果:
3. grad_fn
torch.tensor有一个属性grad_fn,grad_fn的作用是记录创建该张量时所用的函数,这个属性反向传播的时候会用到。例如在上面的例子中,y.grad_fn=MulBackward0,表示y是通过乘法得到的。所以求导的时候就是用乘法的求导法则。同样的,a.grad=AddBackward0表示a是通过加法得到的,使用加法的求导法则。
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)
a = w+x
a.retain_grad()
b = w+1
y = a*b
y.backward()
print(y.grad_fn)
print(a.grad_fn)
print(w.grad_fn)
运行结果是:
叶子节点的.grad_fn是None。
4 静态图
两者的区别用一句话概括就是:
- 动态图:pytorch使用的,运算与搭建同时进行;灵活,易调节。
- 静态图:老tensorflow使用的,先搭建图,后运算;高效,不灵活。
静态图我们是需要先定义好运算规则流程的。比方说,我们先给出
\(a = x+w\) , \(b=w+1\) , \(y=a\times b\)
然后把上面的运算流程存储下来,然后把w=1,x=2放到上面运算框架的入口位置进行运算。而动态图是直接对着已经赋值的w和x进行运算,然后变运算变构建运算图。
在一个课程http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture08.pdf中的第125页,有这样的一个对比例子:
这个代码是Tensorflow的,构建运算的时候,先构建运算框架,然后再把具体的数字放入其中。整个过程类似于训练神经网络,我们要构建好模型的结构,然后再训练的时候再吧数据放到模型里面去。又类似于在旅游的时候,我们事先定要每天的行程路线,然后每天按照路线去行动。
动态图呢,就是直接对数据进行运算,然后动态的构建出运算图。很符合我们的运算习惯。
两者的区别在于,静态图先说明数据要怎么计算,然后再放入数据。假设要放入50组数据,运算图因为是事先构建的,所以每一次计算梯度都很快、高效;动态图的运算图是在数据计算的同时构建的,假设要放入50组数据,那么就要生成50次运算图。这样就没有那么高效。所以称为动态图。
动态图虽然没有那么高效,但是他的优点有以下:
- 更容易调试。
- 动态计算更适用于自然语言处理。(这个可能是因为自然语言处理的输入往往不定长?)
- 动态图更面向对象编程,我们会感觉更加自然。
小白学PyTorch 动态图与静态图的浅显理解的更多相关文章
- Deeplearning——动态图 vs. 静态图
动态图 vs. 静态图 在 fast.ai,我们在选择框架时优先考虑程序员编程的便捷性(能更方便地进行调试和更直观地设计),而不是框架所能带来的模型加速能力.这也正是我们选择 PyTorch 的理由, ...
- 【小白学PyTorch】20 TF2的eager模式与求导
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...
- 【小白学PyTorch】11 MobileNet详解及PyTorch实现
文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2 ...
- 【小白学PyTorch】18 TF2构建自定义模型
[机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs ke ...
- 【小白学PyTorch】4 构建模型三要素与权重初始化
文章目录: 目录 1 模型三要素 2 参数初始化 3 完整运行代码 4 尺寸计算与参数计算 1 模型三要素 三要素其实很简单 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Mo ...
- 【小白学PyTorch】7 最新版本torchvision.transforms常用API翻译与讲解
文章来自:微信公众号[机器学习炼丹术].欢迎关注支持原创 也欢迎添加作者微信:cyx645016617. 参考目录: 目录 1 基本函数 1.1 Compose 1.2 RandomChoice 1. ...
- 【小白学PyTorch】8 实战之MNIST小试牛刀
文章来自微信公众号[机器学习炼丹术].有什么问题都可以咨询作者WX:cyx645016617.想交个朋友占一个好友位也是可以的~好友位快满了不过. 参考目录: 目录 1 探索性数据分析 1.1 数据集 ...
- 【小白学PyTorch】12 SENet详解及PyTorch实现
文章来自微信公众号[机器学习炼丹术].我是炼丹兄,有什么问题都可以来找我交流,近期建立了微信交流群,也在朋友圈抽奖赠书十多本了.我的微信是cyx645016617,欢迎各位朋友. 参考目录: @ 目录 ...
- 【小白学PyTorch】13 EfficientNet详解及PyTorch实现
参考目录: 目录 1 EfficientNet 1.1 概述 1.2 把扩展问题用数学来描述 1.3 实验内容 1.4 compound scaling method 1.5 EfficientNet ...
随机推荐
- 【Laravel 】faker数据填充详解
安装 在laravel中已经自动集成,无需手动安装.如需在其他地方使用,可使用以下命令进行安装. composer require fzaninotto/faker 为Faker指定中文支持 可通过在 ...
- Oracle Dataguard故障转移(failover)操作
注意:故障转移会破坏DG的主从关系,使其变为互不相关的2个数据库,谨慎使用. (一)故障转移操作流程图 (二)故障转移操作流程 备注:以下操作步骤与上面流程图步骤一一对应 STEP1:刷新所有未发送到 ...
- logging日志基础示例
import logging logger = logging.getLogger() # 获取日志对象 logfile = 'test.log' hdlr = logging.FileHandler ...
- PHP getDocNamespaces() 函数
实例 返回 XML 文档的根节点中声明的命名空间: <?php$xml=<<<XML高佣联盟 www.cgewang.com<?xml version="1.0 ...
- [草稿]基于 Virtuoso 环境比较便捷的项目文件及权限管理方案
https://www.cnblogs.com/yeungchie/ 假设如下情况: 1 项目名称 Project_01 2 包含 4 名研发用户,user01 和 user02 为前端工程师,use ...
- 使用Flask开发简单接口(1)--GET请求接口
前言 很多想学习接口测试的同学,可能在最开始的时候,常常会因没有可以练习的项目而苦恼,毕竟网上可以练习的接口项目不多,有些可能太简单了,有些可能又太复杂了,或者是网上一些免费接口请求次数有限制,最终导 ...
- 用Spark进行实时流计算
Spark Streaming VS Structured Streaming Spark Streaming是Spark最初的流处理框架,使用了微批的形式来进行流处理. 提供了基于RDDs的Dstr ...
- 一个试图了解JVM内存模型的两年经验的初级程序员,透彻!
所有的编程语言中都有内存模型这个概念,区别于微架构的内存模型,高级语言的内存模型包括了编译器和微架构两部分.我试图了解了Java.C#和Go语言的内存模型,发现内容基本大同小异,只是这些语言在具体实现 ...
- 线程安全&Java内存模型
目录 Java内存模型 关于线程安全 Volatile关键字 Synchronized锁 重入锁 Lock锁 死锁 乐观锁与悲观锁 乐观锁(适合多读场景) 悲观锁(适合多写场景) Java内存模型 J ...
- MixNet:MixConv:Mixed Depthwise Convolution kernels