Problem Description
Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive
integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know maxGCD(F(i),F(j)) (L≤i<j≤R)
 

Input
There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries.

In the next T lines, each line contains L, R which is mentioned above.

All input items are integers.

1<= T <= 1000000

2<=L < R<=1000000
 

Output
For each query,output the answer in a single line. 

See the sample for more details.
 

Sample Input

2
2 3
3 5
 

Sample Output

1

1

题意:定义了一个函数F(x),表示x这个数的不同素数因数的个数,然后给你一个区间[L,R],问你任意区间内不同的两个数的最大公约数是多少,这里要发现1000000范围内的最大不同素数因数个数是7,所以用dp[i][j]保存从1到i这i个数不同素数因数的个数。这里先预处理1~1000000的数的不同素数因数的个数,可以用普通素数筛法(这里线性筛法好像不能用,因为线性筛法只能求出这个数的素数因数个数和因数个数)。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define maxn 1000000
int vis[maxn+10],prime[maxn+10],tot,dp[maxn+10][10],cnt[maxn+10];
void init()
{
int i,j;cnt[1]=0;
for(i=2;i<=maxn;i++){
if(!vis[i]){
cnt[i]=1;
for(j=2*i;j<=maxn;j+=i){
vis[j]=1;
cnt[j]++;
}
}
}
for(i=1;i<=7;i++){
dp[1][i]=0;
}
for(i=2;i<=maxn;i++){
for(j=1;j<=7;j++){
dp[i][j]=dp[i-1][j];
}
dp[i][cnt[i]]++;
}
} int main()
{
int n,m,i,j,T;
int num1[10];
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=1;i<=7;i++){
num1[i]=dp[m][i]-dp[n-1][i];
}
if(num1[7]>=2){
printf("7\n");continue;
}
if(num1[6]>=2){
printf("6\n");continue;
}
if(num1[5]>=2){
printf("5\n");continue;
}
if(num1[4]>=2){
printf("4\n");continue;
}
if(num1[3]>=2 || (num1[6]==1 && num1[3]==1)){
printf("3\n");continue;
}
if(num1[2]>=2 || (num1[6]==1 && num1[4]==1) || (num1[6]==1 && num1[2]==1) || (num1[4]==1 && num1[2]==1)){
printf("2\n");continue;
}
printf("1\n");
}
return 0;
}

hdu5317 RGCDQ的更多相关文章

  1. hdu5317 RGCDQ 统计

    // hdu5317 RGCDQ // // 题目大意: // // 给定一个闭区间[l,r],定义f(x)是x的不同的质因子的个数 // 比方: 12 = 2 * 2 * 3,是两种.所以f(x) ...

  2. 解题报告 之 HDU5317 RGCDQ

    解题报告 之 HDU5317 RGCDQ Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to ...

  3. hdu5317 RGCDQ (质因子种数+预处理)

    RGCDQ 题意:F(x)表示x的质因子的种数.给区间[L,R],求max(GCD(F(i),F(j)) (L≤i<j≤R).(2<=L < R<=1000000) 题解:可以 ...

  4. HDU-5317 RGCDQ ,暴力打表!

    RGCDQ 暴力水题,很可惜比赛时没有做出来,理清思路是很简单的. 题意:定义f(i)表示i的素因子个数,给你一段区间[l,r],求max_gcd(f(i),f(j)).具体细节参考题目. 思路:数据 ...

  5. HDU 5317 RGCDQ (数论素筛)

    RGCDQ Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. 数学+dp HDOJ 5317 RGCDQ

    题目传送门 /* 题意:给一个区间,问任意两个数的素数因子的GCD最大 数学+dp:预处理出f[i],发现f[i] <= 7,那么用dp[i][j] 记录前i个f[]个数为j的数有几个, dp[ ...

  7. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  8. 2015 Multi-University Training Contest 3 1002 RGCDQ

    RGCDQ Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5317 Mean: 定义函数f(x)表示:x的不同素因子个数. 如:f ...

  9. HDU-5317

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. Zabbix 4.0.24 完整安装

    依赖包安装: yum install net-snmp* libssh-devel libssh2-devel -y Zabbix server安装: wget https://cdn.zabbix. ...

  2. Tengine 四层代理:

    Tengine 四层代理: 1 ) 安装tengine ( nginx1.9 以上版本 编译以后要支持stream 模块) 1.1 ) tengine(nginx) 一定要是nginx-1.9.X 以 ...

  3. IDEA安装codota插件和使用,开发人员的知心伙伴

    打开IDEA 点击左上角的File之后,如下图 成功后如图所示

  4. python的Counter类

    python的Counter类 Counter 集成于 dict 类,因此也可以使用字典的方法,此类返回一个以元素为 key .元素个数为 value 的 Counter 对象集合 from coll ...

  5. 【链表】leetcode-1290-二进制链表转整数

    leetcode-1290-二进制链表转整数 题目描述 给你一个单链表的引用结点 head.链表中每个结点的值不是 0 就是 1.已知此链表是一个整数数字的二进制表示形式. 请你返回该链表所表示数字的 ...

  6. 思考gRPC :为什么是HTTP/2

    Introducing gRPC Support with NGINX 1.13.10 - NGINX https://www.nginx.com/blog/nginx-1-13-10-grpc/ 思 ...

  7. Win10家庭版Hyper-V出坑(完美卸载,冲突解决以及Device Guard问题)

    本文链接:https://blog.csdn.net/hotcoffie/article/details/85043894 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附 ...

  8. JavaScript this 关键字详解

    一.前言 this关键字是JavaScript中最复杂的机制之一.它是一个很特别的关键字,被自动定义在所有函数的作用域中.对于那些没有投入时间学习this机制的JavaScript开发者来说,this ...

  9. 「NOIP2009」最优贸易

    「NOIP2009」最优贸易 「NOIP2009」最优贸易内存限制:128 MiB时间限制:1000 ms 题目描述C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意 ...

  10. Linux性能分析:生产环境服务器变慢,诊断思路和性能评估

    Linux性能分析:生产环境服务器变慢,诊断思路和性能评估 一.整机:top 二.CPU:vmstat 所有CPU核信息 每个进程使用CPU的用量分解信息 三.内存:free 四.硬盘:df 五.磁盘 ...