马拉车用于解决最长回文子串问题,重点是子串,而不是子序列,时间复杂度为O(n)。

解释一下变量的意义:

Len[i]数组去存第i个位置到mx位置的长度

id记录上一次操作的位置(这个操作可以看模板)

mx标记上一次的最长子串的最右端

模板:

 1 void init()  //这个是用来处理字符串的
2 {
3 memset(str,0,sizeof(str));
4 int k=0;
5 str[k++]='$';
6 for(int i=0;i<len;++i)
7 str[k++]='#',str[k++]=s[i];
8 str[k++]='#';
9 len=k;
10 }
11 int manacher() //求最长回文子串
12 {
13 Len[0]=0;
14 int sum=0;
15 int id,mx=0;
16 for(int i=1;i<len;++i)
17 {
18 if(i<mx) Len[i]=min(mx-i,Len[2*id-i]);
19 else Len[i]=1;
20 while(str[i-Len[i]]==str[i+Len[i]]) Len[i]++;
21 if(Len[i]+i>mx)
22 {
23 mx=Len[i]+i;
24 id=i;
25 sum=max(sum,Len[i]);
26 }
27 }
28 return (sum-1);
29 }

当我们要求的以第i个字符为回文字符串的中心的时候,如果i>=mx这个时候没法优化,就是判断(i-1)==(i+1)、(i-2)==(i+2)....一直这样找

看代码就是进行19行、再进行20行

如果i<mx的时候,这个时候

这个时候看一道模板题:

Andy the smart computer science student was attending an algorithms class when the professor asked the students a simple question, "Can you propose an efficient algorithm to find the length of the largest palindrome in a string?"


A string is said to be a palindrome if it reads the same both forwards and backwards, for example "madam" is a palindrome while "acm" is not.



The students recognized that this is a classical problem but couldn't come up with a solution better than iterating over all substrings and checking whether they are palindrome or not, obviously this algorithm is not efficient at all, after a while Andy raised his hand and said "Okay, I've a better algorithm" and before he starts to explain his idea he stopped for a moment and then said "Well, I've an even better algorithm!".



If you think you know Andy's final solution then prove it! Given a string of at most 1000000 characters find and print the length of the largest palindrome inside this string.

Input

Your program will be tested on at most 30 test cases, each test case is given as a string of at most 1000000 lowercase characters on a line by itself. The input is terminated by a line that starts with the string "END" (quotes for clarity).

Output

For each test case in the input print the test case number and the length of the largest palindrome.

Sample Input

abcbabcbabcba
abacacbaaaab
END

Sample Output

Case 1: 13
Case 2: 6

这个时候要注意

不知道是这里memset(Len,0,sizeof(Len)); 导致的超时

还是

 1 void init()
2 {
3 memset(str,0,sizeof(str));
4 int k=0;
5 str[k++]='$';
6 for(int i=0;i<strlen(s);++i) 这个strlen导致的
7 str[k++]='#',str[k++]=s[i];
8 str[k++]='#';
9 len=k;
10 }

正确代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<set>
6 using namespace std;
7 const int maxn=3000005;
8 const int INF=0x3f3f3f3f;
9 const int mod=998244353;
10 char str[maxn],s[maxn];
11 int len,Len[maxn];
12 void init()
13 {
14 memset(str,0,sizeof(str));
15 int k=0;
16 str[k++]='$';
17 for(int i=0;i<len;++i)
18 str[k++]='#',str[k++]=s[i];
19 str[k++]='#';
20 len=k;
21 }
22 int manacher()
23 {
24 Len[0]=0;
25 int sum=0;
26 int id,mx=0;
27 for(int i=1;i<len;++i)
28 {
29 if(i<mx) Len[i]=min(mx-i,Len[2*id-i]);
30 else Len[i]=1;
31 while(str[i-Len[i]]==str[i+Len[i]]) Len[i]++;
32 if(Len[i]+i>mx)
33 {
34 mx=Len[i]+i;
35 id=i;
36 sum=max(sum,Len[i]);
37 }
38 }
39 return (sum-1);
40 }
41 int main()
42 {
43 int t=0;
44 while(~scanf("%s",s))
45 {
46 //memset(Len,0,sizeof(Len));
47 if(strcmp("END",s)==0) break;
48 len=strlen(s);
49 init();
50 printf("Case %d: %d\n",++t,manacher());
51 }
52 return 0;
53 }

Manacher算法 & Palindrome的更多相关文章

  1. Palindrome(poj3974)(manacher算法)

    http://poj.org/problem?id=3974 Palindrome Time Limit: 15000MSMemory Limit: 65536K Total Submissions: ...

  2. Palindrome(最长回文串manacher算法)O(n)

     Palindrome Time Limit:15000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  3. Codeforces Beta Round #7 D. Palindrome Degree manacher算法+dp

    题目链接: http://codeforces.com/problemset/problem/7/D D. Palindrome Degree time limit per test1 secondm ...

  4. 利用Manacher算法寻找字符串中的最长回文序列(palindrome)

    寻找字符串中的最长回文序列和所有回文序列(正向和反向一样的序列,如aba,abba等)算是挺早以前提出的算法问题了,最近再刷Leetcode算法题的时候遇到了一个(题目),所以就顺便写下. 如果用正反 ...

  5. POJ3974 Palindrome (manacher算法)

    题目大意就是说在给定的字符串里找出一个长度最大的回文子串. 才开始接触到manacher,不过这个算法的确很强大,这里转载了一篇有关manacher算法的讲解,可以去看看:地址 神器: #includ ...

  6. POJ 3974 Palindrome 字符串 Manacher算法

    http://poj.org/problem?id=3974 模板题,Manacher算法主要利用了已匹配回文串的对称性,对前面已匹配的回文串进行利用,使时间复杂度从O(n^2)变为O(n). htt ...

  7. 【Manacher算法】poj3974 Palindrome

    Manacher算法教程:http://blog.csdn.net/ggggiqnypgjg/article/details/6645824 模板题,Code 附带注释: #include<cs ...

  8. hdu 3068 最长回文 manacher算法(视频)

    感悟: 首先我要Orz一下qsc,我在网上很难找到关于acm的教学视频,但偶然发现了这个,感觉做的很好,链接:戳戳戳 感觉这种花费自己时间去教别人的人真的很伟大. manacher算法把所有的回文都变 ...

  9. HDU3068 最长回文 Manacher算法

    Manacher算法是O(n)求最长回文子串的算法,其原理很多别的博客都有介绍,代码用的是clj模板里的,写的确实是异常的简洁,现在的我只能理解个大概,下面这个网址的介绍比较接近于这个模板,以后再好好 ...

随机推荐

  1. LeetCode283 移动零

    给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须在原数组上操作, ...

  2. python 2.7.11 环境安装

    0  安装依赖: yum install zlib zlib-devel readline-devel sqlite-devel bzip2-devel openssl-devel gdbm-deve ...

  3. 【Java】计算机软件、博客的重要性、编程语言介绍和发展史

    之前学得不踏实,重新复习一遍,打扎实基础中. 记录 Java核心技术-宋红康_2019版 & Java零基础学习-秦疆 文章目录 软件开发介绍 软件开发 什么是计算机? 硬件及冯诺依曼结构 计 ...

  4. 【Linux】linux中通过date命令获取昨天或明天时间的方法

    date +"%F" 输出格式:2011-12-31 date +"%F %H:%M:%S" 输出格式:2011-12-31 16:29:50 这都是打印出系统 ...

  5. SSTI

    最牛bypass:https://blog.csdn.net/solitudi/article/details/107752717 SSTI的奇怪绕过姿势:https://blog.csdn.net/ ...

  6. CS远控

    Cobaltstrike 一.基础使用 ./teamserver 192.168.43.224 123456 启动服务器端 在windows下的链接 双击bat文件即可 在linux下 ./start ...

  7. 词嵌入之GloVe

    什么是GloVe GloVe(Global Vectors for Word Representation)是一个基于全局词频统计(count-based & overall statisti ...

  8. MVC和MTV框架模式

    1. MVC: MVC,全名是Model View Controller,是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model).视图(View)和控制器(Controller ...

  9. Python干货:了解元组与列表的使用和区别

    元组是 Python 对象的集合,跟列表十分相似.下面进行简单的对比. 列表与元组 1.python中的列表list是变量,而元组tuple是常量. 列表:是使用方括号[],元组:则是使用圆括号() ...

  10. 简单的DbContext工厂类(EFCore)

    前言 根据appsettings.json的中配置的数据库类型,使用工厂模式创建DbContext 代码实现 appsettings.json中的配置项 //使用的数据库类型 "Server ...