• 题意:你和朋友玩游戏,有个一\(01\)序列,你每次给出一个区间,朋友会回答这个区间中的\(1\)的个数是奇数还是偶数,但是你亲爱的朋友可能在撒谎,问在哪个询问你能确定你的朋友在撒谎,输出回合数.

  • 题解:假如区间\([l,r]\)所含的奇数个数为偶数的话,那么其前缀和\(s_{l-1}\)和\(s_r\)所含的\(1\)的个数一定同奇同偶,如果\([l,r]\)所含奇数个数为奇数,\(s_{l-1}\)和\(s_r\)奇偶性一定不同.

    所以我们对前缀和\(s\)进行维护,如果\([l,r]\)为偶数,那么我们可以将区间\(s_{l-1}\)和\(s_r\)合并,并且它们之间的权值应该为\(0\),若为奇数则权值为\(1\),传递关系可以用异或来操作,核心思想依然是带权并查集,但是这题还需要离散化.

    此处顺便附上种类并查集的做法

  • 代码:

    #include <iostream>
    #include <iomanip>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define db double
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    #define rep(a,b,c) for(int a=b;a<=c;++a)
    #define per(a,b,c) for(int a=b;a>=c;--a)
    const int N = 1e6 + 10;
    const int mod = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<ll,ll> PLL;
    int gcd(int a,int b){return b?gcd(b,a%b):a;}
    int lcm(int a,int b){return a/gcd(a,b)*b;} inline int read()
    {
    int X=0; bool flag=1; char ch=getchar();
    while(ch<'0'|ch>'9') {if(ch=='-') flag=0; ch=getchar();}
    while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
    if(flag) return X;
    return ~(X-1);
    } int n;
    int m;
    int a,b;
    string op;
    int p[N];
    int d[N];
    unordered_map<int,int> S; int get(int x){
    if(S.count(x)==0) S[x]=++n;
    return S[x];
    } int find(int x){
    if(p[x]!=x){
    int root=find(p[x]);
    d[x]^=d[p[x]];
    p[x]=root;
    }
    return p[x];
    } int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); rep(i,1,10010) p[i]=i; cin>>n>>m;
    n=0;
    int ans=m; rep(i,1,m){
    cin>>a>>b>>op;
    a=get(a-1),b=get(b);
    int fa=find(a);
    int fb=find(b); int t=0;
    if(op=="odd") t=1; if(fa==fb){
    if((d[a]^d[b])!=t){
    ans=i-1;
    break;
    }
    }
    else{
    p[fa]=fb;
    d[fa]=d[a]^d[b]^t;
    }
    } cout<<ans<<'\n'; return 0;
    } ************************************************************** #include <iostream>
    #include <iomanip>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define db double
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    #define rep(a,b,c) for(int a=b;a<=c;++a)
    #define per(a,b,c) for(int a=b;a>=c;--a)
    const int N = 1e6 + 10;
    const int mod = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<ll,ll> PLL;
    int gcd(int a,int b){return b?gcd(b,a%b):a;}
    int lcm(int a,int b){return a/gcd(a,b)*b;} inline int read()
    {
    int X=0; bool flag=1; char ch=getchar();
    while(ch<'0'|ch>'9') {if(ch=='-') flag=0; ch=getchar();}
    while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
    if(flag) return X;
    return ~(X-1);
    } int n,m;
    int p[N];
    int a,b;
    string op;
    unordered_map<int,int> S; int get(int x){
    if(S.count(x)==0) S[x]=++n;
    return S[x];
    } int find(int x){
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
    } int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>n>>m;
    int cnt=10010/2;
    n=0;
    rep(i,1,10010) p[i]=i;
    int ans=m;
    rep(i,1,m){
    cin>>a>>b>>op; //p[x]存偶数,p[x+n]存奇数
    a=get(a-1),b=get(b);
    if(op=="even"){
    if(find(a+cnt)==find(b)){
    ans=i-1;
    break;
    }
    p[find(a)]=find(b);
    p[find(a+cnt)]=find(b+cnt);
    }
    else{
    if(find(a)==find(b)){
    ans=i-1;
    break;
    }
    p[find(a)]=find(b+cnt);
    p[find(a+cnt)]=find(b);
    }
    } cout<<ans<<'\n'; return 0;
    }

AcWing 239.奇偶游戏 (带权并查集/种类并查集)的更多相关文章

  1. acwing 239. 奇偶游戏 并查集

    地址  https://www.acwing.com/problem/content/241/ 小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个 ...

  2. AcWing 239. 奇偶游戏

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

  3. 浅谈并查集&种类并查集&带权并查集

    并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...

  4. AcWing:239. 奇偶游戏(前缀和 + 离散化 + 带权并查集 + 异或性质 or 扩展域并查集 + 离散化)

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

  5. Cogs 1070. [焦作一中2012] 玻璃球游戏 带权并查集,逆序处理

    题目: http://cojs.tk/cogs/problem/problem.php?pid=1070 1070. [焦作一中2012] 玻璃球游戏 ★   输入文件:marbles.in   输出 ...

  6. 洛谷P5092 [USACO2004OPEN]Cube Stacking 方块游戏 (带权并查集)

    题目描述 约翰和贝茜在玩一个方块游戏.编号为 1\ldots n 1-n 的 n n ( 1 \leq n \leq 30000 1≤n≤30000 )个方块正放在地上,每个构成一个立方柱. 游戏开始 ...

  7. CDOJ 1070 秋实大哥打游戏 带权并查集

    链接 F - 秋实大哥打游戏 Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%lld & %llu Submit ...

  8. bzoj3376/poj1988[Usaco2004 Open]Cube Stacking 方块游戏 — 带权并查集

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3376 题目大意: 编号为1到n的n(1≤n≤30000)个方块正放在地上.每个构成一个立方 ...

  9. 【BZOJ 3376】[Usaco2004 Open]Cube Stacking 方块游戏 带权并查集

    这道题一开始以为是平衡树结果发现复杂度过不去,然后发现我们一直合并而且只是记录到最低的距离,那么就是带权并查集了,带权并查集的权一般是到根的距离,因为不算根要好打,不过还有一些其他的,具体的具体打. ...

随机推荐

  1. newbee-mall 开源商城新计划:秒杀功能、优惠券、对接支付宝

    新项目是 newbee-mall 的升级版本,暂时就叫它 newbee-mall-plus 吧,第一阶段会开发秒杀功能.优惠券.对接支付宝这些功能,也会慢慢加入 Redis. Elastic Sear ...

  2. Hdfs手动执行Balance

    问题发现: 经巡检,服务器中一台节点的hadoop磁盘占用过多,是其它节点的三倍,导致数据严重不均衡. 解决过程: 两种命令: hadoop的bin目录下,运行命令start-balancer.sh ...

  3. Centos搭建Git服务端

    首先需要安装git,可以使用yum源在线安装 yum install -y git 创建一个git用户,用来运行管理git服务 adduser git 初始化git仓库(这里我们选择/home/git ...

  4. dig的安装和使用

    -bash: dig: command not found 解决办法: yum -y install bind-utils dig www.baid bu.com   查看a记录 dig www.ba ...

  5. 基于numpy.einsum的张量网络计算

    张量与张量网络 张量(Tensor)可以理解为广义的矩阵,其主要特点在于将数字化的矩阵用图形化的方式来表示,这就使得我们可以将一个大型的矩阵运算抽象化成一个具有良好性质的张量图.由一个个张量所共同构成 ...

  6. 【Linux】CentOS7中yumbackend.py进程的结束方法

    环境: CentOS Linux release 7.3.1611 (Core) 今天启动这个不怎么用的机器,才启动,就发现后台的yum无法进行安装,持续报这个错误 Loaded plugins: f ...

  7. HTTP Keep-Alive模式客户端与服务器如何判定传输完成

    目录 长连接是什么 服务器如何知道已经完全接受客户端发送的数据 客户端如何知道已经完全接受服务端发送的数据 Transfer-Encoding transfer-coding与Content-Leng ...

  8. 【中文】【deplearning.ai】【吴恩达课后作业目录】

    [目录][吴恩达课后作业目录] 吴恩达深度学习相关资源下载地址(蓝奏云) 课程 周数 名称 类型 语言 地址 课程1 - 神经网络和深度学习 第1周 深度学习简介 测验 中英 传送门 无编程作业 编程 ...

  9. Py变量,递归,作用域,匿名函数

    局部变量与全局变量 全局变量:全局生效的变量,在顶头的,无缩进的定义的变量. 局部变量:函数内生效的变量,在函数内定义的变量. name='1fh' def changename(): name='s ...

  10. Vue项目之实现登录功能的表单验证!

    Vue项目之实现登录功能的表单验证! 步骤: 配置 Form表单验证; 1.必须给el-from组件绑定model 为表单数据对象 2 给需要验证的表单项 el-form-item 绑定 prop 属 ...