• 题意:你和朋友玩游戏,有个一\(01\)序列,你每次给出一个区间,朋友会回答这个区间中的\(1\)的个数是奇数还是偶数,但是你亲爱的朋友可能在撒谎,问在哪个询问你能确定你的朋友在撒谎,输出回合数.

  • 题解:假如区间\([l,r]\)所含的奇数个数为偶数的话,那么其前缀和\(s_{l-1}\)和\(s_r\)所含的\(1\)的个数一定同奇同偶,如果\([l,r]\)所含奇数个数为奇数,\(s_{l-1}\)和\(s_r\)奇偶性一定不同.

    所以我们对前缀和\(s\)进行维护,如果\([l,r]\)为偶数,那么我们可以将区间\(s_{l-1}\)和\(s_r\)合并,并且它们之间的权值应该为\(0\),若为奇数则权值为\(1\),传递关系可以用异或来操作,核心思想依然是带权并查集,但是这题还需要离散化.

    此处顺便附上种类并查集的做法

  • 代码:

    #include <iostream>
    #include <iomanip>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define db double
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    #define rep(a,b,c) for(int a=b;a<=c;++a)
    #define per(a,b,c) for(int a=b;a>=c;--a)
    const int N = 1e6 + 10;
    const int mod = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<ll,ll> PLL;
    int gcd(int a,int b){return b?gcd(b,a%b):a;}
    int lcm(int a,int b){return a/gcd(a,b)*b;} inline int read()
    {
    int X=0; bool flag=1; char ch=getchar();
    while(ch<'0'|ch>'9') {if(ch=='-') flag=0; ch=getchar();}
    while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
    if(flag) return X;
    return ~(X-1);
    } int n;
    int m;
    int a,b;
    string op;
    int p[N];
    int d[N];
    unordered_map<int,int> S; int get(int x){
    if(S.count(x)==0) S[x]=++n;
    return S[x];
    } int find(int x){
    if(p[x]!=x){
    int root=find(p[x]);
    d[x]^=d[p[x]];
    p[x]=root;
    }
    return p[x];
    } int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); rep(i,1,10010) p[i]=i; cin>>n>>m;
    n=0;
    int ans=m; rep(i,1,m){
    cin>>a>>b>>op;
    a=get(a-1),b=get(b);
    int fa=find(a);
    int fb=find(b); int t=0;
    if(op=="odd") t=1; if(fa==fb){
    if((d[a]^d[b])!=t){
    ans=i-1;
    break;
    }
    }
    else{
    p[fa]=fb;
    d[fa]=d[a]^d[b]^t;
    }
    } cout<<ans<<'\n'; return 0;
    } ************************************************************** #include <iostream>
    #include <iomanip>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define db double
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    #define rep(a,b,c) for(int a=b;a<=c;++a)
    #define per(a,b,c) for(int a=b;a>=c;--a)
    const int N = 1e6 + 10;
    const int mod = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<ll,ll> PLL;
    int gcd(int a,int b){return b?gcd(b,a%b):a;}
    int lcm(int a,int b){return a/gcd(a,b)*b;} inline int read()
    {
    int X=0; bool flag=1; char ch=getchar();
    while(ch<'0'|ch>'9') {if(ch=='-') flag=0; ch=getchar();}
    while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
    if(flag) return X;
    return ~(X-1);
    } int n,m;
    int p[N];
    int a,b;
    string op;
    unordered_map<int,int> S; int get(int x){
    if(S.count(x)==0) S[x]=++n;
    return S[x];
    } int find(int x){
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
    } int main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>n>>m;
    int cnt=10010/2;
    n=0;
    rep(i,1,10010) p[i]=i;
    int ans=m;
    rep(i,1,m){
    cin>>a>>b>>op; //p[x]存偶数,p[x+n]存奇数
    a=get(a-1),b=get(b);
    if(op=="even"){
    if(find(a+cnt)==find(b)){
    ans=i-1;
    break;
    }
    p[find(a)]=find(b);
    p[find(a+cnt)]=find(b+cnt);
    }
    else{
    if(find(a)==find(b)){
    ans=i-1;
    break;
    }
    p[find(a)]=find(b+cnt);
    p[find(a+cnt)]=find(b);
    }
    } cout<<ans<<'\n'; return 0;
    }

AcWing 239.奇偶游戏 (带权并查集/种类并查集)的更多相关文章

  1. acwing 239. 奇偶游戏 并查集

    地址  https://www.acwing.com/problem/content/241/ 小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个 ...

  2. AcWing 239. 奇偶游戏

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

  3. 浅谈并查集&种类并查集&带权并查集

    并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...

  4. AcWing:239. 奇偶游戏(前缀和 + 离散化 + 带权并查集 + 异或性质 or 扩展域并查集 + 离散化)

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

  5. Cogs 1070. [焦作一中2012] 玻璃球游戏 带权并查集,逆序处理

    题目: http://cojs.tk/cogs/problem/problem.php?pid=1070 1070. [焦作一中2012] 玻璃球游戏 ★   输入文件:marbles.in   输出 ...

  6. 洛谷P5092 [USACO2004OPEN]Cube Stacking 方块游戏 (带权并查集)

    题目描述 约翰和贝茜在玩一个方块游戏.编号为 1\ldots n 1-n 的 n n ( 1 \leq n \leq 30000 1≤n≤30000 )个方块正放在地上,每个构成一个立方柱. 游戏开始 ...

  7. CDOJ 1070 秋实大哥打游戏 带权并查集

    链接 F - 秋实大哥打游戏 Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:%lld & %llu Submit ...

  8. bzoj3376/poj1988[Usaco2004 Open]Cube Stacking 方块游戏 — 带权并查集

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3376 题目大意: 编号为1到n的n(1≤n≤30000)个方块正放在地上.每个构成一个立方 ...

  9. 【BZOJ 3376】[Usaco2004 Open]Cube Stacking 方块游戏 带权并查集

    这道题一开始以为是平衡树结果发现复杂度过不去,然后发现我们一直合并而且只是记录到最低的距离,那么就是带权并查集了,带权并查集的权一般是到根的距离,因为不算根要好打,不过还有一些其他的,具体的具体打. ...

随机推荐

  1. 肌肤管家SkinRun V3S智能皮肤检测仪,用AI探索肌肤问题

    继肌肤管家SkinRun V3皮肤检测仪之后,肌肤管家SkinRun近期又一重磅推出的肌肤管家SkinRun V3S 智能肌肤测试仪引起了美业人的广泛关注.据了解它汇集百万皮肤数据,利用五光谱原理和人 ...

  2. leetcode 93. Restore IP Addresses(DFS, 模拟)

    题目链接 leetcode 93. Restore IP Addresses 题意 给定一段序列,判断可能组成ip数的所有可能集合 思路 可以采用模拟或者DFS的想法,把总的ip数分成四段,每段判断是 ...

  3. 开发进阶:Dotnet Core多路径异步终止

    今天用一个简单例子说说异步的多路径终止.我尽可能写得容易理解吧,但今天的内容需要有一定的编程能力.   今天这个话题,来自于最近对gRPC的一些技术研究. 话题本身跟gRPC没有太大关系.应用中,我用 ...

  4. Docker-常用基建的安装与部署

    一:Docker安装 1:通过yum安装docker yum -y install gcc yum -y install gcc-c++ yum remove docker \ docker-clie ...

  5. javascript判断浏览器访问,刷新,返回

    话不多说,直接上 if (window.performance.navigation.type === 0/* 正常访问 */) { // 你要干的事 } else if (window.perfor ...

  6. 前端知识(一)05 axios-谷粒学院

    目录 一.axios的作用 二.axios实例 1.复制js资源 2.创建 axios.html 3.引入js 4.启动课程中心微服务 5.编写js 6.html渲染数据 7.跨域 8.使用生命周期函 ...

  7. InnoDB的主键选择与插入优化

    索引的存放方式MyISAM和InnoDB存储引擎在MySQL中,不同存储引擎对索引的实现方式是不同的,总结下MyISAM和InnoDB两个存储引擎的索引实现方式.MyISAM引擎使用B+Tree作为索 ...

  8. Ubuntu源、Python虚拟环境及pip源配置

    Ubuntu 命令行更改源 在修改source.list前,最好先备份一份 软件源的地址配置文件在 /etc/apt/sources.list 执行备份命令 sudo cp /etc/apt/sour ...

  9. uni-app开发经验分享七: 有关列表数据下拉加载方法的解析及记录

    在使用uni.request获取后台数据时,我们往往碰到一个问题,列表的懒加载及数据实时更新,这里记录下我制作这类功能的方法. 问题描述:后台返回数据,前端需要进行10个为一组来分页,先显示前10个, ...

  10. PWN_ret2text,ret2syscall,ret2shellcode

    首先了解下Linux中的保护机制(具体的绕过等后续再说) 1.canary(栈保护) 在函数开始时就随机产生一个值,将这个值CANARY放到栈上紧挨ebp的上一个位置,当攻击者想通过缓冲区溢出覆盖eb ...