给出一堆边给你,让你判断这是不是一棵树。边的信息以(start , end)的形式给出.
A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties.

There is exactly one node, called the root, to which no directed edges point.
Every node except the root has exactly one edge pointing to it.
There is a unique sequence of directed edges from the root to each node.
For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.

In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero.

Output

For each test case display the line "Case k is a tree." or the line "Case k is not a tree.", where k corresponds to the test case number (they are sequentially numbered starting with 1).

Sample Input

6 8  5 3  5 2  6 4
5 6 0 0 8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0 3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1

Sample Output

Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.

方法一:直接使用树的定义来做。
    树的性质

        1)树的节点数比边数多1(空树除外)

        2) 树中除根节点的每个节点只有唯一的父节点。

      条件1可以排除有环的图,条件2可以排除多个根的图。

      特别注意的是,空树不满足条件1,需单独判断!

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int pre[100010];
int main()
{
int s=0;
while(1)
{
s++;
int x,y,s1=0,k=0;
memset(pre,0,sizeof(pre));
while(~scanf("%d%d",&x,&y)&&(x+y))
{
if(x==-1&&y==-1) return 0;
pre[x]=1;
pre[y]=1;
k++;
}
for(int i=0;i<100010;i++)
{
if(pre[i])
s1++;
}
if(s1==0||s1==k+1)//树的节点数比边数多1(空树除外)
printf("Case %d is a tree.\n",s);
else
printf("Case %d is not a tree.\n",s);
}
}

方法二:并查集

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = 1000; int p[maxn]; //存父亲节点
int r[maxn]; //存入度
bool used[maxn]; //判断下标是否使用
int Max, Min; //判断树中使用的下标的最值 void set() //初始化
{
for(int x = 0; x < maxn; x++)
{
p[x] = x; //自己为自己的父亲节点
r[x] = 0; //各点独立 入度为 0
used[x] = false; //各点均未使用
}
Min = maxn;
Max = -maxn;
} int find(int x) //找根节点
{
return x == p[x] ? x : p[x] = find(p[x]);
} void Union(int x, int y) //合并两点所在的树
{
int fx = find(x);
int fy = find(y);
p[fy] = fx;
}
int main()
{
int a, b;
int C = 0; //记录是第几组数据
while(scanf("%d%d", &a, &b) != EOF)
{
if(a == -1 && b == -1) break;
set(); //初始化 p[b] = a; r[b]++; //处理第一对数据
Min = min(a, b);
Max = max(a, b);
used[a] = true; //标记使用
used[b] = true; int x, y;
bool flag = true;
while(scanf("%d%d", &x, &y) != EOF)
{
if(x == 0 && y == 0)
{
int root = 0, index; //记录根节点个数 和下标
for(int i = Min; i <= Max; i++)
{
if(used[i] && i == p[i]) //判断有几个根
{
root++; index = i;
}
} if(root != 1) flag = false; //一棵树只能有一个根 if(flag)
{
for(int i = Min; i <= Max; i++) //判断入度情况,除了根节点,其它节点入度均为1
{
if(i != index && used[i] && r[i] != 1) flag = false;
}
} if(flag) printf("Case %d is a tree.\n", ++C);
else printf("Case %d is not a tree.\n", ++C);
//printf("%d\n", root); //开始有些小错误 输出中间变量,找错误
break; //注意:易忘记
} if(find(x) != find(y)) Union(x, y); //如果不在同一棵树中,则合并 r[y]++; //入度+1
used[x] = true; //标记使用
used[y] = true;
Min = min(Min, x); Min = min(Min, y); //更新最值
Max = max(Max, x); Max = max(Max, y);
}
}
return 0;
}

B - B(Is It A Tree?)的更多相关文章

  1. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  2. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  3. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  4. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  5. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  6. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  7. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  8. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  9. Leetcode 笔记 101 - Symmetric Tree

    题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...

  10. Tree树节点选中及取消和指定节点的隐藏

    指定节点变色 指定节点隐藏 单击节点 未选中则选中该节点 已选中则取消该节点 前台: 1.HTML <ul id="listDept" name="listDept ...

随机推荐

  1. 地图开发笔记(一):百度地图介绍、使用和Qt内嵌地图Demo

    前言   Qt在地图方面的研发.   百度地图 介绍   百度的地图分为多个开发,都是在线的(离线的需要自己提取,本篇解说在线地图).  百度地图JavaScript API支持HTTP和HTTPS, ...

  2. 【SpringBoot1.x】SpringBoot1.x 数据访问

    SpringBoot1.x 数据访问 简介 对于数据访问层,无论是 SQL 还是 NOSQL,Spring Boot 默认采用整合 Spring Data 的方式进行统一处理,添加大量自动配置,屏蔽了 ...

  3. Linux 入门教程:00 Background

    Linux 为何物? 就是一个操作系统. Linux 历史: 操作系统始于二十世纪五十年代,当时的操作系统能运行批处理程序.批处理程序不需要用户的交互,它从文件或者穿孔卡片读取数据,然后输出到另外一个 ...

  4. /etc/hosts文件

    这个文件告诉主机哪些域名对应哪些ip,哪些主机名对应哪些ip. 一般也三个域 网络ip地址 主机名或域名 主机名别名 两部分的时候 主机ip地址和主机名

  5. C#使用struct直接转换下位机数据

    编写上位机与下位机通信的时候,涉及到协议的转换,比较多会使用到二进制.传统的方法,是将数据整体获取到byte数组中,然后逐字节对数据进行解析.这样操作工作量比较大,对于较长数据段更容易计算位置出错. ...

  6. Redis 实战 —— 01. Redis 数据结构简介

    一些数据库和缓存服务器的特性和功能 P4 名称 类型 数据存储选项 查询类型 附加功能 Redis 使用内存存储(in-memory)的非关系数据库 字符串.列表.哈希表.集合.有序集合 每种数据类型 ...

  7. 三种梯度下降算法的区别(BGD, SGD, MBGD)

    前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区 ...

  8. Promise.all()使用实例

    一.什么是Promise.all()? 在说这个之前要先说清楚promise.promise就是一个对象,专门用来处理异步操作的. 而Promise.all方法用于将多个 Promise 实例,包装成 ...

  9. 一句话木马拿下webshell

    1.我们先建立一个简单的一句话木马文件,我们这里就命名为shell2吧. 2.因为提交的文件可能是有过滤的,我们这个靶场的这个题目就是禁止上传危险的文件类型,如jsp jar war等,所以就需要绕过 ...

  10. expect的使用

    1. expect概述 1.1 expect的功能 脚本执行时,有时会需要人工进行交互输入,这时可以通过expect工具来实现自动交互. expect是一种shell解释器,但是expect可以在命令 ...