给出一堆边给你,让你判断这是不是一棵树。边的信息以(start , end)的形式给出.
A tree is a well-known data structure that is either empty (null, void, nothing) or is a set of one or more nodes connected by directed edges between nodes satisfying the following properties.

There is exactly one node, called the root, to which no directed edges point.
Every node except the root has exactly one edge pointing to it.
There is a unique sequence of directed edges from the root to each node.
For example, consider the illustrations below, in which nodes are represented by circles and edges are represented by lines with arrowheads. The first two of these are trees, but the last is not.

In this problem you will be given several descriptions of collections of nodes connected by directed edges. For each of these you are to determine if the collection satisfies the definition of a tree or not.

Input

The input will consist of a sequence of descriptions (test cases) followed by a pair of negative integers. Each test case will consist of a sequence of edge descriptions followed by a pair of zeroes Each edge description will consist of a pair of integers; the first integer identifies the node from which the edge begins, and the second integer identifies the node to which the edge is directed. Node numbers will always be greater than zero.

Output

For each test case display the line "Case k is a tree." or the line "Case k is not a tree.", where k corresponds to the test case number (they are sequentially numbered starting with 1).

Sample Input

6 8  5 3  5 2  6 4
5 6 0 0 8 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 0 3 8 6 8 6 4
5 3 5 6 5 2 0 0
-1 -1

Sample Output

Case 1 is a tree.
Case 2 is a tree.
Case 3 is not a tree.

方法一:直接使用树的定义来做。
    树的性质

        1)树的节点数比边数多1(空树除外)

        2) 树中除根节点的每个节点只有唯一的父节点。

      条件1可以排除有环的图,条件2可以排除多个根的图。

      特别注意的是,空树不满足条件1,需单独判断!

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
int pre[100010];
int main()
{
int s=0;
while(1)
{
s++;
int x,y,s1=0,k=0;
memset(pre,0,sizeof(pre));
while(~scanf("%d%d",&x,&y)&&(x+y))
{
if(x==-1&&y==-1) return 0;
pre[x]=1;
pre[y]=1;
k++;
}
for(int i=0;i<100010;i++)
{
if(pre[i])
s1++;
}
if(s1==0||s1==k+1)//树的节点数比边数多1(空树除外)
printf("Case %d is a tree.\n",s);
else
printf("Case %d is not a tree.\n",s);
}
}

方法二:并查集

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int maxn = 1000; int p[maxn]; //存父亲节点
int r[maxn]; //存入度
bool used[maxn]; //判断下标是否使用
int Max, Min; //判断树中使用的下标的最值 void set() //初始化
{
for(int x = 0; x < maxn; x++)
{
p[x] = x; //自己为自己的父亲节点
r[x] = 0; //各点独立 入度为 0
used[x] = false; //各点均未使用
}
Min = maxn;
Max = -maxn;
} int find(int x) //找根节点
{
return x == p[x] ? x : p[x] = find(p[x]);
} void Union(int x, int y) //合并两点所在的树
{
int fx = find(x);
int fy = find(y);
p[fy] = fx;
}
int main()
{
int a, b;
int C = 0; //记录是第几组数据
while(scanf("%d%d", &a, &b) != EOF)
{
if(a == -1 && b == -1) break;
set(); //初始化 p[b] = a; r[b]++; //处理第一对数据
Min = min(a, b);
Max = max(a, b);
used[a] = true; //标记使用
used[b] = true; int x, y;
bool flag = true;
while(scanf("%d%d", &x, &y) != EOF)
{
if(x == 0 && y == 0)
{
int root = 0, index; //记录根节点个数 和下标
for(int i = Min; i <= Max; i++)
{
if(used[i] && i == p[i]) //判断有几个根
{
root++; index = i;
}
} if(root != 1) flag = false; //一棵树只能有一个根 if(flag)
{
for(int i = Min; i <= Max; i++) //判断入度情况,除了根节点,其它节点入度均为1
{
if(i != index && used[i] && r[i] != 1) flag = false;
}
} if(flag) printf("Case %d is a tree.\n", ++C);
else printf("Case %d is not a tree.\n", ++C);
//printf("%d\n", root); //开始有些小错误 输出中间变量,找错误
break; //注意:易忘记
} if(find(x) != find(y)) Union(x, y); //如果不在同一棵树中,则合并 r[y]++; //入度+1
used[x] = true; //标记使用
used[y] = true;
Min = min(Min, x); Min = min(Min, y); //更新最值
Max = max(Max, x); Max = max(Max, y);
}
}
return 0;
}

B - B(Is It A Tree?)的更多相关文章

  1. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  2. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  3. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  4. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  5. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  6. Leetcode 笔记 100 - Same Tree

    题目链接:Same Tree | LeetCode OJ Given two binary trees, write a function to check if they are equal or ...

  7. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  8. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  9. Leetcode 笔记 101 - Symmetric Tree

    题目链接:Symmetric Tree | LeetCode OJ Given a binary tree, check whether it is a mirror of itself (ie, s ...

  10. Tree树节点选中及取消和指定节点的隐藏

    指定节点变色 指定节点隐藏 单击节点 未选中则选中该节点 已选中则取消该节点 前台: 1.HTML <ul id="listDept" name="listDept ...

随机推荐

  1. js如何替换字符串中匹配到多处中某一指定节点?

    抛出一个问题,如图,搜索关键字,匹配到四处,那我鼠标放在第二处,我想把它变个颜色,该怎么实现呢?回到文章的标题,js如何替换字符串中匹配到多处中某一指定节点? 字符串的替换,我们首先想到的一个属性是r ...

  2. LeetCode235 二叉搜索树的最近公共祖先

    给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x 是 p.q 的祖 ...

  3. LeetCode-151-中等-翻转字符串里面的单词

    问题描述 给定一个字符串,逐个翻转字符串中的每个单词. 说明: 无空格字符构成一个 单词 . 输入字符串可以在前面或者后面包含多余的空格,但是反转后的字符不能包括. 如果两个单词间有多余的空格,将反转 ...

  4. 深入剖析setState同步异步机制

    关于 setState setState 的更新是同步还是异步,一直是人们津津乐道的话题.不过,实际上如果我们需要用到更新后的状态值,并不需要强依赖其同步/异步更新机制.在类组件中,我们可以通过thi ...

  5. QLibrary 加载动态库

    阅读本文大概需要 6.6分钟 一般情况下在没有头文件支持情况下,想要引入某个动态库,最好的办法就是使用「动态加载」的方法,在Qt中一般使用QLibyary来操作 常用 api QLibrary(con ...

  6. kill 指令的执行原理

    kill 指令有两种写法 " kill query + 线程 id "." kill connection(可缺省) + 线程 id ".分别表示关闭指定线程正 ...

  7. 技术实践丨React Native 项目 Web 端同构

    摘要:尽管 React Native 已经进入开源的第 6 个年头,距离发布 1.0 版本依旧是遥遥无期."Learn once, write anywhere",完全不影响 Re ...

  8. 【Docker】CentOS7 上无网络情况下安装

    自建虚拟机,但是连接不上网络,只能通过下载rpm包进行安装docker 环境:CentOS 7.3.1611 x64 rpm镜像下载地址用的阿里的https://mirrors.aliyun.com/ ...

  9. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

  10. linux自定义位置安装tomcat8.5

    1 下载tomcat安装文件 下载地址:https://tomcat.apache.org/download-80.cgi  2 解压文件 tar -zxvf apache-tomcat-8.5.56 ...