代码和其他资料在 github

一、tf.data模块

  • 数据分割
import tensorflow as tf
dataset = tf.data.Dataset.from_tensor_slices([1,2,3,4,5,6,7]) #1维
dataset2 = tf.data.Dataset.from_tensor_slices([[1,2],[3,4],[5,6]]) #2维
dataset_dic = tf.data.Dataset.from_tensor_slices({'a':[1,2,3,4],'b':[6,7,8,9], 'c':[12,13,14,15]}) #字典

tf.data.Dataset.from_tensor_slices() 数据切割,并且转化为 Tensor 类型。

dataset
for ele in dataset:
print(ele)

输入:

<TensorSliceDataset shapes: (), types: tf.int32>
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(5, shape=(), dtype=int32)
tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(7, shape=(), dtype=int32)
for ele in dataset:
print(ele.numpy())

输入:

1
2
3
4
5
6
7
dataset2
for ele2 in dataset2:
print(ele2.numpy())

输入:

<TensorSliceDataset shapes: (2,), types: tf.int32>
[1 2]
[3 4]
[5 6]
dataset_dic
for ele_dic in dataset_dic:
print(ele_dic)

输入:

<TensorSliceDataset shapes: {a: (), b: (), c: ()}, types: {a: tf.int32, b: tf.int32, c: tf.int32}>
{'a': <tf.Tensor: shape=(), dtype=int32, numpy=1>, 'b': <tf.Tensor: shape=(), dtype=int32, numpy=6>, 'c': <tf.Tensor: shape=(), dtype=int32, numpy=12>}
{'a': <tf.Tensor: shape=(), dtype=int32, numpy=2>, 'b': <tf.Tensor: shape=(), dtype=int32, numpy=7>, 'c': <tf.Tensor: shape=(), dtype=int32, numpy=13>}
{'a': <tf.Tensor: shape=(), dtype=int32, numpy=3>, 'b': <tf.Tensor: shape=(), dtype=int32, numpy=8>, 'c': <tf.Tensor: shape=(), dtype=int32, numpy=14>}
{'a': <tf.Tensor: shape=(), dtype=int32, numpy=4>, 'b': <tf.Tensor: shape=(), dtype=int32, numpy=9>, 'c': <tf.Tensor: shape=(), dtype=int32, numpy=15>}
  • 其他常用操作
for ele_np in dataset_np.take(4): # 取出前四个
print(ele_np)
dataset_np = dataset_np.shuffle(7) # 打乱顺序
dataset_np = dataset_np.repeat(count = 3) #重复3次,为None无限循环
dataset = dataset.map(tf.square) # 取平方

二、手写识别实例

import tensorflow as tf
(train_images,train_labels),(test_images,test_labels) = tf.keras.datasets.mnist.load_data()
train_images = train_images / 255
test_images = test_images / 255
ds_train_img = tf.data.Dataset.from_tensor_slices(train_images)
ds_train_lab = tf.data.Dataset.from_tensor_slices(train_labels)
ds_train = tf.data.Dataset.zip((ds_train_img,ds_train_lab)) # 数据合并
ds_train = ds_train.shuffle(buffer_size = 10000).repeat().batch(64)
ds_test = tf.data.Dataset.from_tensor_slices((test_images,test_labels))
ds_test = ds_test.batch(64)
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape = (28,28)),tf.keras.layers.Dense(128,activation = 'relu'),tf.keras.layers.Dense(10,activation = 'softmax')])
model.compile(optimizer = 'adam',loss = 'sparse_categorical_crossentropy',metrics = ['accuracy'])
steps_per_epoch = train_images.shape[0] // 64 # 每个epoch的步数
model.fit(ds_train,epochs = 5,steps_per_epoch = steps_per_epoch,validation_data = ds_test,validation_steps = 10000 // 64)

Tensorflow2(二)tf.data输入模块的更多相关文章

  1. tf.data(二) —— 并行化 tf.data.Dataset 生成器

    在处理大规模数据时,数据无法全部载入内存,我们通常用两个选项 使用tfrecords 使用 tf.data.Dataset.from_generator() tfrecords的并行化使用前文已经有过 ...

  2. tf.data

    以往的TensorFLow模型数据的导入方法可以分为两个主要方法,一种是使用feed_dict另外一种是使用TensorFlow中的Queues.前者使用起来比较灵活,可以利用Python处理各种输入 ...

  3. python3 zip 与tf.data.Data.zip的用法

    ###python自带的zip函数 与 tf.data.Dataset.zip函数 功能用法相似 ''' zip([iterator1,iterator2,]) 将可迭代对象中对应的元素打包成一个元祖 ...

  4. 使用Open xml 操作Excel系列之二--从data table导出数据到Excel

    由于Excel中提供了透视表PivotTable,许多项目都使用它来作为数据分析报表. 在有些情况下,我们需要在Excel中设计好模板,包括数据源表,透视表等, 当数据导入到数据源表时,自动更新透视表 ...

  5. tensorflow2:tf.app.run()

    在很多TensorFlow公布的Demo中,都有这样的代码存在,如下,这是干什么的呢? 我们来看一下源代码: # tensorflow/tensorflow/python/platform/defau ...

  6. angular学习(二)—— Data Binding

    转载请写明来源地址:http://blog.csdn.net/lastsweetop/article/details/51182106 Data Binding 在angular中.model和vie ...

  7. <Spring Data JPA>二 Spring Data Jpa

    1.pom依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...

  8. 关于TensorFlow2的tf.function()和AutoGraph的一些问题解决

    在使用TensorFlow的AutoGraph的时候出现了一些问题,特此记录 AutoGraph did not convert this function. Try decorating it di ...

  9. [CAMCOCO][C#]我的系统架构.服务器端.(二)----DATA层

    这一层在园子里有很多很多的介绍了,这层写好之后老胡也没多研究,基本上就是参考的园子里大咖们的写法,具体的说明老胡也细说不了了,把接口和思路简单描述一下就好,如果有问题还是那句话,感谢您不吝赐教,老胡这 ...

随机推荐

  1. Hadoop学习之基础环境搭建

    期望目的 基于VMware workstation 10.0 + CentOS 7 + hadoop 3.2.0,在虚拟机上搭建一套Hadoop集群环境,总共包含4个节点,其中1个master节点.3 ...

  2. angularjs脏检查

    angularjs实现了双向绑定,与vue的defineProperty不同,它的原理在于它的脏检查机制,以下做了一些总结: angular.js介绍 AngularJs是mvvm框架,它的组件是vm ...

  3. 从别人的代码中学习golang系列--03

    这篇博客还是整理从https://github.com/LyricTian/gin-admin 这个项目中学习的golang相关知识. 作者在项目中使用了 github.com/casbin/casb ...

  4. 有关WebSocket必须了解的知识

    一.前言 最近之前时间正好在学习java知识,所以自个想找个小项目练练手,由于之前的ssm系统已经跑了也有大半年了,虽然稀烂,但是功能还是勉强做到了,所以这次准备重构ssm系统,改名为postCode ...

  5. 【mysql数据库优化】

    sql优化:1.MYSQL逻辑分层 :连接层 服务层 引擎层 存储层 InnoDB(默认) :事务优先 (适合高并发操作:行锁) MyISAM :性能优先 (表锁) 2.sql的执行顺序:SQL : ...

  6. 022_go语言中的协程

    代码演示 package main import "fmt" func f(from string) { for i := 0; i < 3; i++ { fmt.Print ...

  7. Python-关于正则表达式的总结

    什么是正则表达式? 正则表达式(regular expression)描述了一种字符串匹配的模式(pattern),用于字符串的 匹配 和 提取 等操作.正则表达式在所有编程语言中都是通用的. 很多人 ...

  8. Tomcat Windows 开机自启

    在命令提示符中,进入 tomcat 的 bin 目录,执行命令,注册服务 service.bat install 在"服务"中,将 tomcat 服务设为自动

  9. Vue 大量data及rules的data选项结构组织

    如果Vue文件需要很多的data成员及表单验证,建议使用类似结构 export default{ data(){ const model = { username: 'suzhen', passwor ...

  10. 如何为你的IDEA安装插件——几个实用插件推荐

    文章目录 如何为你的IDEA安装插件--几个实用插件推荐 安装插件 插件推荐 1.Background Image Plus 2.Translation 3.CodeGlance 4.Rainbow ...