[BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物
题面:
传送门:http://poj.openjudge.cn/practice/1009/
Solution
DP+DP
首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包DP就好
即:f[i][j]表示前i个物品装满容量为j的背包的方案数.
转移也很简单 f[i][j]=f[i-1][j]+f[i-1][j-w[i]] (i:1~n,j:1~m) (即选和不选的问题)
初始化 f[i][0]=1 (i:[0~n]) (如果背包容量为0,无论如何都有且只有一种方案将其装满)
接下来,考虑用另一个dp来求解在某一物品不放下的方案数
设 g[i][j] 表示第i个物品不放入背包,装满容量为j的背包的方案数
转移为:
g[i][j] = f[n][j] ( j < w[i]) (即当背包容量小于所不放物品的大小时,那么其方案数必然为f[n][j],因为f[n][j]中的所有方案肯定取不到第i个)
= f[n][j] - g[i][j-w[i]]
i:1~n j:1~m
下面那个转移意思即是:
所有的方案总数 减去 包括第i项物品的方案数
因为g[i][j-w[i]]中的每一种情况再装入w[i]即可达到g[i][j]这个状态,而g[i][j]的定义是不装入i的方案数,所以说包括第i项物品的方案能且仅能从g[i][j-w[i]]转移过来
初始化:
g[i][0]=1 (i:[0~n])(背包容量为0时方案有且仅有啥都不要)
这样就可以口头AC了
但是,还有一个要注意的小地方
在%P的意义下, f[n][j]-g[i][j-w[i]]有可能为负数
负数取模的方法为 : (x % P + P)%P
然后就OK啦
Code
//Openjudge 1009:消失之物
//Apr,2ed,2018
//DP+DP
#include<iostream>
#include<cstdio>
using namespace std;
long long read()
{
long long x=0,f=1; char c=getchar();
while(!isdigit(c)){if(c=='-') f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N=2000+100;
const int M=2000+100;
const int P=10;
char f[N][M],g[M];
int w[N],n,m;
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
w[i]=read(); f[0][0]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
{
f[i][j]=f[i-1][j];
if(j-w[i]>=0)
f[i][j]+=f[i-1][j-w[i]];
if(f[i][j]>=P) f[i][j]%=P;
} g[0]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(j<w[i])
printf("%d",g[j]=f[n][j]);
else
printf("%d",g[j]=(f[n][j]-g[j-w[i]]+P)%P);
}
printf("\n");
}
return 0;
}
c++
后记
这种DP+DP的题目还是第一次写,写起来有一点点不熟练
看来我还是需要多学习一个
[BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物的更多相关文章
- Luogu P4141 消失之物 背包 分治
题意:给出$n$个物品的体积和最大背包容量$m$,求去掉一个物品$i$后,装满体积为$w\in [1,m]$背包的方案数. 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, ...
- luogu p4141 消失之物(背包dp+容斥原理)
题目传送门 昨天晚上学长讲了这题,说是什么线段树分治,然后觉得不可做,但那还不是正解,然后感觉好像好难的样子. 由于什么鬼畜的分治不会好打,然后想了一下$O(nm)$的做法,想了好长时间觉得这题好像很 ...
- P4141 消失之物
目录 链接 思路 代码 链接 P4141 消失之物 思路 f[N];//表示删掉物品后能出现容积为i的方案数 a[N];//单纯0-1背包的方案数asd 那么就先求出a[i]来,然后转移就是 if(j ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- 洛谷P4141 消失之物——背包
题目:https://www.luogu.org/problemnew/show/P4141 竟然是容斥:不选 i 物品只需减去选了 i 物品的方案: 范围原来是2*10^3而不是2*103啊... ...
- 洛谷P4141消失之物(背包经典题)——Chemist
题目地址:https://www.luogu.org/problemnew/show/P4141 分析:这题当然可以直接暴力枚举去掉哪一个物品,然后每次暴力跑一遍背包,时间复杂度为O(m*n^2),显 ...
- 洛谷P4141 消失之物 题解 背包问题扩展
题目链接:https://www.luogu.com.cn/problem/P4141 题目大意: 有 \(n\) 件物品,求第 \(i\) 件物品不能选的时候(\(i\) 从 \(1\) 到 \(n ...
- [洛谷P4141] 消失之物「背包DP」
暴力:暴力枚举少了哪个,下面套一个01背包 f[i][j]表示到了i物品,用了j容量的背包时的方案数,f[i][j]=f[i-1][j]+f[i-1][j-w[i]]O(n^3) 优化:不考虑消失的, ...
- 洛谷P4141消失之物
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” ...
随机推荐
- Python-组织结构-目录结构、包导入、__init__文件、模块内置变量、* 导入限制
__pycache__ .pyc文件,中间代码,提升python运行效率 目录 分档和归类 Python项目组织结构 包 模块 类 函数.变量 # 层级依次往下都是一对多关系 Python项目目录结构 ...
- chrome浏览器的两个坑,以及其他
chrome打开本地网页时,不能保存cookiechrome拒绝使用ajax访问本地文件(火狐可以) ipinfo.io/ip 获得公网iphttps://v1.hitokoto.cn/ 获得一句动漫 ...
- aarch64架构移动设备挂载移动硬盘
添加yum源 wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo 安装ntfs yum inst ...
- 使用Ajax新闻系统管理需求分析
新闻系统管理需求分析 1.1项目背景 新闻发布系统(News Release System or Content Management System),是一个基于新闻和内容管理的全站管理系统,本系 ...
- 谈谈InnoDB中的B+树索引
索引类似于书的目录,他是帮助我们从大量数据中快速定位某一条或者某个范围数据的一种数据结构.有序数组,搜索树都可以被用作索引.MySQL中有三大索引,分别是B+树索引.Hash索引.全文索引.B+树索引 ...
- 设置 eclipse C++ 版本
gcc 版本 4.8.5 20150623 (Red Hat 4.8.5-28) (GCC) 默认是使用 C++ 98 版本进行编译 设置 eclipse 中 C++ 的版本: Project -& ...
- 云原生 go-zero 微服务框架
0. go-zero介绍 go-zero是一个集成了各种工程实践的web和rpc框架.通过弹性设计保障了大并发服务端的稳定性,经受了充分的实战检验. go-zero包含极简的API定义和生成工具goc ...
- 物联网wifi模块
物联网wifi模块 物联网wifi模块 是上海卓岚推出的MQTT+JSON转Modbus物联网WiFi核心模块.支持以MQTT的方式连接云端服务器,支持可以界面话配置,自主采集Modbus仪表/645 ...
- C++冷知识(1)
func()等价于func(void) 也就是说在C++中,参数列表为空意味着不接受任何参数.之所以要注意这一点是因为在C语言中,参数列表为空意味着参数不确定.两者的语义是有巨大差别的,作为学了C再学 ...
- php超全局数组 为什么swoole的http服务不能用
php的超全局数组$_GET等九个 可以直接使用 无需定义 实际上是浏览器请求到Apache或者nginx的时候 转发到PHP处理模块 fpm转发给php解释器处理 php封装好后丢给php的 sw ...