前言:一道水题。

-----------------------

题目链接

题目大意:给出数列$a_i$和$b_i$,问使$\sum_{i=1}^n (a_i-b_i)^2$最小的最少操作次数。

首先,如果两个数列相同位置的数排名相同,那么符合题意。现在我们证明一下:

证明:$a_i<a_j,b_i<b_j,(a_i-b_i)^2+(a_j-b_j)^2<(a_i-b_j)^2+(b_i-a_j)^2$

$(a_i-b_j)^2+(b_i-a_j)^2=a_i^2+b_i^2+a_j^2+b_j^2-2a_ib_j-2b_ia_j$

$(a_i-b_i)^2+(a_j-b_j)^2=a_i^2+b_i^2+a_j^2+b_j^2-2a_ib_i-2a_jb_j$

上式减下式得:$2a_i(b_i-b_j)+2a_j(b_j-b_i)$

$=2a_i(b_i-b_j)-2a_j(b_i-b_j)$

$=2(a_i-a_j)(b_i-b_j)>0$

所以$(a_i-b_i)^2+(a_j-b_j)^2<(a_i-b_j)^2+(b_i-a_j)^2$。

证毕。

计算次数的话就是比较新的位置和之前的位置,归并排序解决。其实就是归并排序求逆序对的变形。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=;
int n,c[],r[],ans;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){
if (ch=='-') f=-;
ch=getchar();
}while(isdigit(ch)){
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
struct node
{
int x,l;
}a[],b[];
bool cmp(node s,node y)
{
return s.x<y.x;
}
void msort(int l,int ri)
{
if (l>=ri) return;
int mid=(l+ri)>>;
msort(l,mid);
msort(mid+,ri);
int i,j,k;
for (i=l,j=mid+,k=l;i<=mid&&j<=ri;)
if (c[i]>c[j])
{
ans=(ans+ri-j+)%mod;
r[k]=c[i];i++;k++;
}
else
{
r[k]=c[j];k++;j++;
}
for (;i<=mid;i++,k++) r[k]=c[i];
for (;j<=ri;j++,k++) r[k]=c[j];
for (int s=l;s<=ri;s++) c[s]=r[s];
}
signed main()
{
n=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].l=i;
for (int i=;i<=n;i++) b[i].x=read(),b[i].l=i;
sort(a+,a+n+,cmp);
sort(b+,b+n+,cmp);
for (int i=;i<=n;i++) c[b[i].l]=a[i].l;
msort(,n);
cout<<ans;
return ;
}

【NOIP2013】火柴排队 题解(贪心+归并排序)的更多相关文章

  1. LOJ2609. NOIP2013 火柴排队 【树状数组】

    LOJ2609. NOIP2013 火柴排队 LINK 题目大意: 给你两个数列,定义权值∑i=1(ai−bi)^2 问最少的操作次数,最小化权值 首先需要发现几个性质 最小权值满足任意i,j不存在a ...

  2. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  3. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  4. [NOIP2013] 火柴排队(归并排序)

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  5. noip2013火柴排队_Solution

    要想对任意(ai,bi)和(aj­和b­j),当ai<aj时,都有bi<=bj:当ai>=aj时,bi>=bj,当对a进行升序排序后(b同时发生改变,从而不改变值,最后有a1& ...

  6. NOIP2013火柴排队[逆序对]

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  7. jzoj[1438]NOIP2013火柴排队

    读题: 相邻两个火柴可以交换?两个火柴序列?嗅到了归并排序的味道. 读完题目之后,我们可以知道,如果想要交换次数最少,可以先固定一个序列不变,比如说a序列不变,变b序列 样例是 4 2 3 1 4 3 ...

  8. noip2013 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  9. 洛谷p1966火柴排队题解

    ps:鉴于你们的蒟蒻yxj实在太蒻辽, 所以, 看不懂也是正常的........ 树状数组 xxy学姐给我们讲的树状数组, 她讲的真的是太好啦!qwq!吹爆xxy 然后, 为了巩固自己, 硬着头皮写题 ...

随机推荐

  1. mysql解压缩版安装和卸载

    所有的cmd命令都是在管理员模式下输入 官方下载网址:https://dev.mysql.com/downloads/mysql/ 安装mysql mysqld install //安装mysql:卸 ...

  2. Spring @Value注解使用${}进行注入(转)

    原文:http://my.oschina.net/js99st/blog/632104 spring3中新增的@value注解 http://bijian1013.iteye.com/blog/202 ...

  3. void operator()()的功能

    在学习多线程的时候看到这样的一段代码,为什么要重载()呢?真有这个必要吗? #include <iostream> #include <thread> class Counte ...

  4. java大数据最全课程学习笔记(3)--HDFS 简介及操作

    目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages 目录 HDFS 简介及操作 HDFS概述 HDFS产出背景及定义 HDFS优缺点 HDFS组成架构 HDFS文件块大小 ...

  5. Java顺序查找、二分查找

    Java顺序查找.二分查找   查找算法中顺序查找算是最简单的了,无论是有序的还是无序的都可以,只需要一个个对比即可,但其实效率很低. 顺序查找 动图演示 详细代码 // 顺序查找 public st ...

  6. threadLocal源码土话解说

    前言 废话不多说,先了解什么是threadLocal,下面是threadLocal类的说明注释, 这段话大致(猜的)意思是,改类为线程提供了一个局部变量,但是呢,这个变量和普通的变量又有所不同,怎么不 ...

  7. 深入掌握K8S Pod

    k8s系列文章: 什么是K8S K8S configmap介绍 Pod是k8s中最小的调度单元,包含了一个"根容器"和其它用户业务容器. 如果你使用过k8s的话,当然会了解pod的 ...

  8. 在Ubuntu 18.04中安装Wine QQ、微信、TIM

    近日重新安装了Ubuntu 18.04,因此要重新安装一下Wine QQ.微信之类的,完整安装Wine系列软件一直是一个老大难的问题,网上搜集到的博客也比较零散,因此这里特此写篇博客记录一下 0. 这 ...

  9. ASP.NET WebAPI2复杂请求跨域设置

    ASP.Net Core的跨域设置比较简单  官方都整合了 具体的参见微软官方文档: https://docs.microsoft.com/zh-cn/aspnet/core/security/cor ...

  10. 缓存利器、Lua模块下的共享内存

    上一节讲到了worker进程的共享内存,它利用丰富的指令使数据的缓存操作变得非常简单,但它也存在一些缺点. 1.worker进程之间会有锁竞争,在高并发的情况下会增加性能开销.2.只支持Lua布尔值. ...