【NOIP2013】火柴排队 题解(贪心+归并排序)
前言:一道水题。
-----------------------
题目大意:给出数列$a_i$和$b_i$,问使$\sum_{i=1}^n (a_i-b_i)^2$最小的最少操作次数。
首先,如果两个数列相同位置的数排名相同,那么符合题意。现在我们证明一下:
证明:$a_i<a_j,b_i<b_j,(a_i-b_i)^2+(a_j-b_j)^2<(a_i-b_j)^2+(b_i-a_j)^2$
$(a_i-b_j)^2+(b_i-a_j)^2=a_i^2+b_i^2+a_j^2+b_j^2-2a_ib_j-2b_ia_j$
$(a_i-b_i)^2+(a_j-b_j)^2=a_i^2+b_i^2+a_j^2+b_j^2-2a_ib_i-2a_jb_j$
上式减下式得:$2a_i(b_i-b_j)+2a_j(b_j-b_i)$
$=2a_i(b_i-b_j)-2a_j(b_i-b_j)$
$=2(a_i-a_j)(b_i-b_j)>0$
所以$(a_i-b_i)^2+(a_j-b_j)^2<(a_i-b_j)^2+(b_i-a_j)^2$。
证毕。
计算次数的话就是比较新的位置和之前的位置,归并排序解决。其实就是归并排序求逆序对的变形。
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int mod=;
int n,c[],r[],ans;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){
if (ch=='-') f=-;
ch=getchar();
}while(isdigit(ch)){
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
struct node
{
int x,l;
}a[],b[];
bool cmp(node s,node y)
{
return s.x<y.x;
}
void msort(int l,int ri)
{
if (l>=ri) return;
int mid=(l+ri)>>;
msort(l,mid);
msort(mid+,ri);
int i,j,k;
for (i=l,j=mid+,k=l;i<=mid&&j<=ri;)
if (c[i]>c[j])
{
ans=(ans+ri-j+)%mod;
r[k]=c[i];i++;k++;
}
else
{
r[k]=c[j];k++;j++;
}
for (;i<=mid;i++,k++) r[k]=c[i];
for (;j<=ri;j++,k++) r[k]=c[j];
for (int s=l;s<=ri;s++) c[s]=r[s];
}
signed main()
{
n=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].l=i;
for (int i=;i<=n;i++) b[i].x=read(),b[i].l=i;
sort(a+,a+n+,cmp);
sort(b+,b+n+,cmp);
for (int i=;i<=n;i++) c[b[i].l]=a[i].l;
msort(,n);
cout<<ans;
return ;
}
【NOIP2013】火柴排队 题解(贪心+归并排序)的更多相关文章
- LOJ2609. NOIP2013 火柴排队 【树状数组】
LOJ2609. NOIP2013 火柴排队 LINK 题目大意: 给你两个数列,定义权值∑i=1(ai−bi)^2 问最少的操作次数,最小化权值 首先需要发现几个性质 最小权值满足任意i,j不存在a ...
- [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)
[NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...
- [树状数组+逆序对][NOIP2013]火柴排队
火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...
- [NOIP2013] 火柴排队(归并排序)
题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...
- noip2013火柴排队_Solution
要想对任意(ai,bi)和(aj和bj),当ai<aj时,都有bi<=bj:当ai>=aj时,bi>=bj,当对a进行升序排序后(b同时发生改变,从而不改变值,最后有a1& ...
- NOIP2013火柴排队[逆序对]
题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...
- jzoj[1438]NOIP2013火柴排队
读题: 相邻两个火柴可以交换?两个火柴序列?嗅到了归并排序的味道. 读完题目之后,我们可以知道,如果想要交换次数最少,可以先固定一个序列不变,比如说a序列不变,变b序列 样例是 4 2 3 1 4 3 ...
- noip2013 火柴排队
题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...
- 洛谷p1966火柴排队题解
ps:鉴于你们的蒟蒻yxj实在太蒻辽, 所以, 看不懂也是正常的........ 树状数组 xxy学姐给我们讲的树状数组, 她讲的真的是太好啦!qwq!吹爆xxy 然后, 为了巩固自己, 硬着头皮写题 ...
随机推荐
- java NIO 原理解析之学习笔记
关键抽象 1.Buffer缓冲区 NIO数据传递模型,是一个连续的内存区域.所有数据传递均通过buffer类处理:NIO提供了字符串.整形.字节.堆等多种缓冲区. 2.Channel(通道) NIO把 ...
- Oracle数据库期末总结
目录 基础内容-服务相关 Oracle体系结构: 表空间与数据文件之间的关系: 内存结构(SGA ,PGA) 表空间(大题)(tablespace) 数据文件(大题)(.dbf) 控制文件,记录和维护 ...
- DVWA学习记录 PartⅨ
XSS(DOM) 1. 题目 XSS,全称Cross Site Scripting,即跨站脚本攻击,某种意义上也是一种注入攻击,是指攻击者在页面中注入恶意的脚本代码,当受害者访问该页面时,恶意代码会在 ...
- java 面向对象(三十九):反射(三)了解ClassLoader
1.类的加载过程----了解 2.类的加载器的作用 3.类的加载器的分类 4.Java类编译.运行的执行的流程 5.使用Classloader加载src目录下的配置文件 @Test public vo ...
- 爬虫06 /scrapy框架
爬虫06 /scrapy框架 目录 爬虫06 /scrapy框架 1. scrapy概述/安装 2. 基本使用 1. 创建工程 2. 数据分析 3. 持久化存储 3. 全栈数据的爬取 4. 五大核心组 ...
- JavaScript:父页面与Iframe页面方法互调
父页面调用Iframe页面中的函数 以上是父页面中定义的iframe,注意添加name属性 在父页面中调用mapFrame的ShowMyLocation方法 Iframe页面调用父页面的方法 直接在I ...
- PG-跨库操作-dblink
在PostgreSQL数据库之间进行跨库操作的方式 dblink postgres_fdw 本文先说说dblink:dblink是一个支持从数据库会话中连接到其他PostgreSQL数据库的插件.在其 ...
- 深入浅出ReentrantReadWriteLock源码解析
读写锁实现逻辑相对比较复杂,但是却是一个经常使用到的功能,希望将我对ReentrantReadWriteLock的源码的理解记录下来,可以对大家有帮助 前提条件 在理解ReentrantReadWri ...
- p71_文件传送协议FTP
一.FTP服务器和用户端 FTP是基于客户/服务器(C/S) 的协议. 用户通过一一个客户机程序连接至在远程计算机上运行的服务器程序. 依照FTP协议提供服务,进行文件传送的计算机就是FTP服务器. ...
- MySQL之外键、联合查询、子查询
外键(foreign key): 外面的键(键不在自己表中),如果一张表中有一个字段(非主键)指向另外一张表的主键,那么将该字段称之为外键. 外键可以在创建表的时候或者创建表之后增加(但是要考虑数据的 ...