LeetCode-二叉搜索树的范围和
二叉搜索树的范围和
LeetCode-938
- 首先需要仔细理解题目的意思:找出所有节点值在L和R之间的数的和。
- 这里采用递归来完成,主要需要注意二叉搜索树的性质。
/**
* 给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和。
* 二叉搜索树保证具有唯一的值。
**/
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdio>
#include<queue>
#include<vector>
using namespace std;
// Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
/**
10
/ \
5 15
/ \ \
3 7 18
**/
class Solution {
private:
int sum=0;//
int l,r;
public:
void rangeSum(TreeNode* node){
//cout<<node->val<<endl;
if(node->val<=r&&node->val>=l){
sum+=node->val;
if(node->left)
rangeSum(node->left);
if(node->right)
rangeSum(node->right);
}else if(node->val<l){
if(node->right)
rangeSum(node->right);
}else if(node->val>r){
if(node->left)
rangeSum(node->left);
}
}
int rangeSumBST(TreeNode* root, int L, int R) {
this->l=L;
this->r=R;
if(root)
rangeSum(root);
return sum;
}
};
int main(){
TreeNode* t1=new TreeNode(10);
TreeNode* t2=new TreeNode(5);
TreeNode* t3=new TreeNode(15);
TreeNode* t4=new TreeNode(3);
TreeNode* t5=new TreeNode(7);
TreeNode* t6=new TreeNode(18);
t2->left=t4;t2->right=t5;
t3->left=t6;
t1->left=t2;t1->right=t3;
Solution solution;
cout<<solution.rangeSumBST(t1,7,15)<<endl;
system("pause");
return 0;
}
LeetCode-二叉搜索树的范围和的更多相关文章
- [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化
Serialization is the process of converting a data structure or object into a sequence of bits so tha ...
- [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...
- [LeetCode] Lowest Common Ancestor of a Binary Search Tree 二叉搜索树的最小共同父节点
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- [LeetCode] Binary Search Tree Iterator 二叉搜索树迭代器
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
- [LeetCode] Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...
- [LeetCode] Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 这道 ...
- [LeetCode] Recover Binary Search Tree 复原二叉搜索树
Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...
- [LeetCode] Validate Binary Search Tree 验证二叉搜索树
Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...
- [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- [LeetCode] Unique Binary Search Trees II 独一无二的二叉搜索树之二
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. For e ...
随机推荐
- hdu5459 Jesus Is Here
Problem Description I've sent Fang Fang around 201314 text messages in almost 5 years. Why can't she ...
- Codeforces Round #653 (Div. 3) D. Zero Remainder Array (数学,模拟)
题意:有一组数,刚开始时\(x=0\),每次可以让\(x\)++或让某一个元素+=\(x\)后\(x\)++,每个元素只能加一次\(x\),问最少操作多少次使得所有元素能被\(k\)整除. 题解:每个 ...
- Pod 实现机制
Pod 为了亲密性应用而存在: 两个应用需要通过 127.0.0.1 或者 Socket 通信: 两个应用之间发生文件交互: 两个应用发生频繁的调用 共享网络 Pod 中的所有容器拥有同一个 IP 地 ...
- Python源码剖析——01内建对象
<Python源码剖析>笔记 第一章:对象初识 对象是Python中的核心概念,面向对象中的"类"和"对象"在Python中的概念都为对象,具体分为 ...
- 微服务架构Day05-SpringBoot之Servlet
旧版 配置嵌入式Servlet容器 SpringBoot默认使用Tomcat作为嵌入式Servlet容器 如何定制和修改Servlet容器相关配置 1.在配置文件中定制和修改Servlet容器有关的配 ...
- Go string 一清二楚
前言 字符串(string) 作为 go 语言的基本数据类型,在开发中必不可少,我们务必深入学习一下,做到一清二楚. 本文假设读者已经知道切片(slice)的使用,如不了解,可阅读 Go 切片 基本知 ...
- Spring框架整合Mybatis项目
第一步:导入相关依赖jar包 <dependency> <groupId>org.mybatis</groupId> <artifactId>mybat ...
- short URL 短网址实现原理剖析
short URL 短网址实现原理剖析 意义,简短便于分享,避免出现超长 URL 的字符长度限制问题 原理分析, 使用 HashMap 存储对应的映射关系 (长度不超过7的字符串,由大小写字母加数字共 ...
- 中英文混排网站排版指南 All In One
中英文混排网站排版指南 All In One 排版 数字与单位 正确 5G 的下载速度可以达到 1Gbps,4G 为100Mbps 1Gbps === 1000Mbps 错误 5G的下载速度可以达到1 ...
- how to config custom process.env in node.js
how to config custom process.env in node.js process.env APP_ENV NODE_ENV https://nodejs.org/api/proc ...