UVA 216 - Getting in Line
216 - Getting in Line
Computer networking requires that the computers in the network be linked.
This problem considers a ``linear" network in which the computers are chained together so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).
Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.
Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.
The picture below shows the optimal way of connecting the computers shown above, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input
The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of computers indicates the end of input.
After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers are at identical locations and each computer will be listed once.
Output
The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final line should be a sentence indicating the total amount of cable used.
In listing the lengths of cable to be cut, traverse the network from one end to the other. (It makes no difference at which end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output for different networks and with distances in feet printed to 2 decimal places.
Sample Input
6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0
Sample Output
**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.
两台电脑之间由一条缆线连接, 缆线的长度除了这两点间的直线长度,还要额外加上16米长。
#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct cable
{
double x,y;
}a[10]; /*保存坐标*/
int b[10],c[10];
double length(double x1,double y1,double x2,double y2) /*求两点之间距离*/
{
double L=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
return L;
}
int main()
{
double sum,min,l;
int n,i,cases=0;
while(~scanf("%d",&n)&&n)
{
for(i=0;i<n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
b[i]=i;
}
min=2147483645;
do
{
sum=0;
for(i=0;i<n-1;i++)
{
l=length(a[b[i]].x,a[b[i]].y,a[b[i+1]].x,a[b[i+1]].y)+16;
sum+=l;
}
if(sum<min)
{
min=sum;
for(i=0;i<n;i++)
c[i]=b[i]; //可用 memcpy(c,b,sizeof(b)) 代替
}
}while(next_permutation(b,b+n));
printf("**********************************************************\n");
printf("Network #%d\n",++cases);
for(i=0;i<n-1;i++)
{
l=length(a[c[i]].x,a[c[i]].y,a[c[i+1]].x,a[c[i+1]].y)+16;
printf("Cable requirement to connect (%.lf,%.lf) to (%.lf,%.lf) is %.2lf feet.\n",a[c[i]].x,a[c[i]].y,a[c[i+1]].x,a[c[i+1]].y,l);
}
printf("Number of feet of cable required is %.2lf.\n",min);
}
return 0;
}
因为next_permutation是C++里面的函数,所以提交时要选择C++语言,不然会编译错误。
而回溯法是更常用的方法,也更加灵活,更难掌握。
回溯法就是深搜(DFS)的变形。 一般深搜是要访问所有的解答树的,而回溯也是把问题分成若干步骤并递归求解,但是如果当前步骤已经不是最佳选择的
话,就不继续递归下去,而是返回上一及的递归调用。这样就可以节省很多的时间,而不必徒劳去访问那些“不归路”。
#include<stdio.h>
#include<string.h>
#include<math.h>
struct cable
{
double x,y;
}a[10];
int b[10],c[10],vis[10],n;
double min,sum,l;
double length(double x1,double y1,double x2,double y2)
{
double L=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))+16;
return L;
}
void dfs(int cur,double sum)
{
int i;
if(cur==n)
{
if(sum<min)
{
min=sum;
memcpy(c,b,sizeof(b));
}
return;
}
if(sum>=min) return;
for(i=0;i<n;i++)
{
if(vis[i]) continue;
vis[i]=1;
b[cur]=i;
if(cur==0)
dfs(cur+1,0);
else
{
l=length(a[b[cur]].x,a[b[cur]].y,a[b[cur-1]].x,a[b[cur-1]].y);
dfs(cur+1,sum+l);
}
vis[i]=0;
}
}
int main()
{
int cases=0,i;
while(~scanf("%d",&n)&&n)
{
memset(vis,0,sizeof(vis));
for(i=0;i<n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
b[i]=i;
}
min=99999999;
dfs(0,0);
printf("**********************************************************\n");
printf("Network #%d\n",++cases);
for(i=1;i<n;i++)
{
l=length(a[c[i-1]].x,a[c[i-1]].y,a[c[i]].x,a[c[i]].y);
printf("Cable requirement to connect (%.lf,%.lf) to (%.lf,%.lf) is %.2lf feet.\n",a[c[i-1]].x,a[c[i-1]].y,a[c[i]].x,a[c[i]].y,l);
}
printf("Number of feet of cable required is %.2lf.\n",min);
}
return 0;
}
UVA 216 - Getting in Line的更多相关文章
- uva 216 Getting in Line 最短路,全排列暴力做法
题目给出离散的点,要求求出一笔把所有点都连上的最短路径. 最多才8个点,果断用暴力求. 用next_permutation举出全排列,计算出路程,记录最短路径. 这题也可以用dfs回溯暴力,但是用最小 ...
- UVa 216 Getting in Line【枚举排列】
题意:给出n个点的坐标,(2<=n<=8),现在要使得这n个点连通,问最小的距离的和 因为n很小,所以可以直接枚举这n个数的排列,算每一个排列的距离的和, 保留下距离和最小的那个排列就可以 ...
- Getting in Line UVA 216
Getting in Line Computer networking requires that the computers in the network be linked. This pro ...
- UVA题目分类
题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...
- codeforces 713B B. Searching Rectangles(二分)
题目链接: B. Searching Rectangles time limit per test 1 second memory limit per test 256 megabytes input ...
- Python写出LSTM-RNN的代码
0. 前言 本文翻译自博客: iamtrask.github.io ,这次翻译已经获得trask本人的同意与支持,在此特别感谢trask.本文属于作者一边学习一边翻译的作品,所以在用词.理论方面难免会 ...
- Codeforces Round #371 (Div. 2) D. Searching Rectangles 交互题 二分
D. Searching Rectangles 题目连接: http://codeforces.com/contest/714/problem/D Description Filya just lea ...
- hdu 5735 Born Slippy 暴力
Born Slippy 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5735 Description Professor Zhang has a r ...
- 转:西部数据NAS设备hack
通过该文学习一下常见硬件web漏洞.重点关注一下几个方面: 1.登录验证代码: 2.文件上传代码: 3.system/exec/popen等是否存在注入可能: 4.调用二进制文件: 5.未登陆可以访问 ...
随机推荐
- C++中出现的计算机术语2
C-style strings(C 风格字符串) C 程序把指向以空字符结束的字符数组的指针视为字符串.在 C++ 中,字符串字面值就是 C 风格字符串.C 标准库定义了一系列处理这样的字符串的库函数 ...
- js判断浏览器类型(手机和电脑终端)
工作中经常会用到通过js来判断浏览器的功能!今天这里通过js来判断浏览器是来自移动设备还是pc设备! 代码如下: var browser={ versions:function(){ var u = ...
- 2014由于在myeclipse5.5.1许可证
点击假设Myeclipse负载项目server该图标不响应.这是MyEclipse过期,这也是一年许可: subscriber: axin Serial:nLR8ZC-855575-69517252 ...
- 数据类型和typeof操作符
虽然学习js有一段时间了,但是对js的基础语法却是有些生疏.最近在看jquery源码,决定随带总结一些基础的语法知识.今天总结一下数据类型和typeof,这在写js的时候,是不得不知道的知识. 数据类 ...
- SD卡添加文件,添加不进去,报 Read-only file system错误
android 模拟器手机如何添加文件到sd卡? 在DDMS中直接添加文件到模拟器sd卡如果出现错误类似:Failed to push XXXXX.txt on emulator- : Read-on ...
- Oracle组函数、多表查询、集合运算、数据库对象(序列、视图、约束、索引、同义词)等
count组函数:(过滤掉空的字段) select count(address),count(*) from b_user max() avg() min(),sum() select sum(age ...
- ExpandoObject,DynamicObject,DynamicMetaObject
ExpandoObject,DynamicObject,DynamicMetaObject 接上文:浅谈Dynamic关键字系列之三(上) 为什么TryXXX方法没有被调用?? 将DynamicPro ...
- 于快速创建 IEqualityComparer<T> 实例的类 Equality<T>
于快速创建 IEqualityComparer<T> 实例的类 Equality<T> 原文中的 Equality<T> 实现如下: 1 2 3 4 5 6 7 8 ...
- 动手Jquery插件
自己动手Jquery插件 最近Web应用程序中越来越多地用到了JQuery等Web前端技术.这些技术框架有效地改善了用户的操作体验,同时也提高了开发人员构造丰富客户 端UI的效率.JQuery本身提供 ...
- U盘安装Win7
声明:本方法仅仅适用于windows 7 的安装. 工具准备: 1.网上下载一个windows 7 系统.最好是纯净版的,非Gost 版.虽然装机慢了一些,但到用时就体会到他的流畅. 2.Window ...