[Hadoop in Action] 第1章 Hadoop简介
- 编写可扩展、分布式的数据密集型程序和基础知识
- 理解Hadoop和MapReduce
- 编写和运行一个基本的MapReduce程序
- 方便——Hadoop运行在由一般商用机器构成的大型集群上,或者云计算服务之上;
- 健壮——Hadoop致力于在一般商用硬件上运行,其架构假设硬件会频繁地出现失效;
- 可扩展——Hadoop通过增加集群节点,可以线性地扩展以处理更大的数据集;
- 简单——Hadoop运行用户快速编写出高效的并行代码。
- 用向外扩展代替向上扩展——扩展商用关系型数据库的代价会更加昂贵的
- 用键/值对代替关系表——Hadoop使用键/值对作为基本数据单元,可足够灵活地处理较少结构化的数据类型
- 用函数式编程(MapReduce)代替声明式查询(SQL)——在MapReduce中,实际的数据处理步骤是由你指定的,很类似于SQL引擎的一个执行计划
- 用离线处理代替在线处理——Hadoop是专为离线处理和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式
- 存储文件到许多计算机上(第一阶段)
- 编写一个基于磁盘的散列表,使得处理不受内存容量限制
- 划分来自第一阶段的中间数据(即wordcount)
- 洗牌这些分区到第二阶段中合适的计算机上
- 应用的输入必须组织为一个键/值对的列表list(<k1,v1>);
- 含有键/值对的列表被拆分,进而通过调用mapper的map函数对每个单独的键/值对<k1,v1>进行处理;
- 所有mapper的输出被聚合到一个包含<k2,v2>对的巨大列表中;
- 每个reducer分别处理每个被聚合起来的<k2,list(v2)>,并输出<k3,v3>。
- Linux操作系统
- JDK1.6以上运行环境
- Hadoop操作环境
public class WordCount { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); //(1)使用空格进行分词
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()); //(2)把Token放入Text对象中
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result); //(3)输出每个Token的统计结果
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
[Hadoop in Action] 第1章 Hadoop简介的更多相关文章
- [hadoop in Action] 第3章 Hadoop组件
管理HDFS中的文件 分析MapReduce框架中的组件 读写输入输出数据 1.HDFS文件操作 [命令行方式] Hadoop的文件命令采取的形式为: hadoop fs -cmd < ...
- [Hadoop in Action] 第7章 细则手册
向任务传递定制参数 获取任务待定的信息 生成多个输出 与关系数据库交互 让输出做全局排序 1.向任务传递作业定制的参数 在编写Mapper和Reducer时,通常会想让一些地方可以配 ...
- [Hadoop in Action] 第6章 编程实践
Hadoop程序开发的独门绝技 在本地,伪分布和全分布模式下调试程序 程序输出的完整性检查和回归测试 日志和监控 性能调优 1.开发MapReduce程序 [本地模式] 本地模式 ...
- [Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
- [Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
- Hadoop专业解决方案-第13章 Hadoop的发展趋势
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第13章 Hadoop的发展趋势小组已经翻译完成,在此对 ...
- [hadoop读书笔记] 第四章 Hadoop I/O操作
P92 压缩 P102 序列化 序列化:将结构化对象转为字节流便于在网上传输或写到磁盘进行永久性存储的过程 用于进程之间的通信或者数据的永久存储 反序列化:将字节流转为结构化对象的逆过程 Hadoop ...
- [Hadoop in Action] 第2章 初识Hadoop
Hadoop的结构组成 安装Hadoop及其3种工作模式:单机.伪分布和全分布 用于监控Hadoop安装的Web工具 1.Hadoop的构造模块 (1)NameNode(名字节点) ...
- Hadoop专业解决方案-第12章 为Hadoop应用构建企业级的安全解决方案
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,春节期间,项目进度有所延迟,不过元宵节以后大家已经步入正轨, 目前第12章 为Hadoop应用构 ...
随机推荐
- ABP源码分析二十四:Notification
NotificationDefinition: 用于封装Notification Definnition 的信息.注意和Notification 的区别,如果把Notification看成是具体的消息 ...
- js倒计时-倒计输入的时间
计算指定时间到指定时间之间相差多少天.时.分.秒. 节日.活动.商城常用. 原理: 主要使用到时间戳,也就是从1970 年 1 月 1 日 到指定时间的毫秒数. 1. 求出毫秒差 :当两个时间直接进行 ...
- HTML5 学习总结(一)——HTML5概要与新增标签
一.HTML5概要 1.1.为什么需要HTML5 HTML4陈旧不能满足日益发展的互联网需要,特别是移动互联网.为了增强浏览器功能Flash被广泛使用,但安全与稳定堪忧,不适合在移动端使用(耗电.触摸 ...
- springboot(八):RabbitMQ详解
RabbitMQ 即一个消息队列,主要是用来实现应用程序的异步和解耦,同时也能起到消息缓冲,消息分发的作用. 消息中间件在互联网公司的使用中越来越多,刚才还看到新闻阿里将RocketMQ捐献给了apa ...
- Oracle从文件系统迁移到ASM存储
环境:RHEL 6.4 + Oracle 11.2.0.4 需求:数据库存储由文件系统迁移到ASM 数据库存储迁移到ASM磁盘组 1.1 编辑参数文件指定新的控制文件路径 1.2 启动数据库到nomo ...
- xDebug + webgrind 对 php 程序进行性能分析
环境 macOs Sierra php 7.0.8 MAMP Pro 集成环境 背景 最近有一个需要在微信朋友圈上线的 h5,本人做了一个抽奖的接口,也没多想,直接上 php ci(CodeIgnit ...
- 微信小程序的应用及信息整合,都放到这里了
微信小程序终于开始公测了,这篇文章也终于可以发布了. 这篇文章可以说是微信小程序系列三部曲最后一篇.8 月份,小程序推出前,我写了<别开发 app 了>详细阐述了为什么创业应该放弃原生 a ...
- MySQL的数据模型
MySQL的数据类型主要分为三大类: 数值型(Numeric Type) 日期与时间型(Date and Time Type) 字符串类型(String Type) 1. 数值 MySQL的数值类型按 ...
- line-height不同单位之间的区别
line-height用来设置元素的行高. 该属性会影响行框的布局.在应用到一个块级元素时,它定义了该元素中基线之间的最小距离而不是最大距离. line-height 与 font-size 的计算值 ...
- 导出BOM表
1.Report->Bill of Materials for Project 将Value拖上左上角的Grouped Columns 2.在Excel表中全选器件,右键设置"设置单元 ...