[Hadoop in Action] 第1章 Hadoop简介
- 编写可扩展、分布式的数据密集型程序和基础知识
- 理解Hadoop和MapReduce
- 编写和运行一个基本的MapReduce程序
- 方便——Hadoop运行在由一般商用机器构成的大型集群上,或者云计算服务之上;
- 健壮——Hadoop致力于在一般商用硬件上运行,其架构假设硬件会频繁地出现失效;
- 可扩展——Hadoop通过增加集群节点,可以线性地扩展以处理更大的数据集;
- 简单——Hadoop运行用户快速编写出高效的并行代码。
- 用向外扩展代替向上扩展——扩展商用关系型数据库的代价会更加昂贵的
- 用键/值对代替关系表——Hadoop使用键/值对作为基本数据单元,可足够灵活地处理较少结构化的数据类型
- 用函数式编程(MapReduce)代替声明式查询(SQL)——在MapReduce中,实际的数据处理步骤是由你指定的,很类似于SQL引擎的一个执行计划
- 用离线处理代替在线处理——Hadoop是专为离线处理和大规模数据分析而设计的,并不适合那种对几个记录随机读写的在线事务处理模式
- 存储文件到许多计算机上(第一阶段)
- 编写一个基于磁盘的散列表,使得处理不受内存容量限制
- 划分来自第一阶段的中间数据(即wordcount)
- 洗牌这些分区到第二阶段中合适的计算机上
- 应用的输入必须组织为一个键/值对的列表list(<k1,v1>);
- 含有键/值对的列表被拆分,进而通过调用mapper的map函数对每个单独的键/值对<k1,v1>进行处理;
- 所有mapper的输出被聚合到一个包含<k2,v2>对的巨大列表中;
- 每个reducer分别处理每个被聚合起来的<k2,list(v2)>,并输出<k3,v3>。
- Linux操作系统
- JDK1.6以上运行环境
- Hadoop操作环境
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); //(1)使用空格进行分词
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()); //(2)把Token放入Text对象中
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result); //(3)输出每个Token的统计结果
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
[Hadoop in Action] 第1章 Hadoop简介的更多相关文章
- [hadoop in Action] 第3章 Hadoop组件
管理HDFS中的文件 分析MapReduce框架中的组件 读写输入输出数据 1.HDFS文件操作 [命令行方式] Hadoop的文件命令采取的形式为: hadoop fs -cmd < ...
- [Hadoop in Action] 第7章 细则手册
向任务传递定制参数 获取任务待定的信息 生成多个输出 与关系数据库交互 让输出做全局排序 1.向任务传递作业定制的参数 在编写Mapper和Reducer时,通常会想让一些地方可以配 ...
- [Hadoop in Action] 第6章 编程实践
Hadoop程序开发的独门绝技 在本地,伪分布和全分布模式下调试程序 程序输出的完整性检查和回归测试 日志和监控 性能调优 1.开发MapReduce程序 [本地模式] 本地模式 ...
- [Hadoop in Action] 第5章 高阶MapReduce
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter 1.链接MapReduce作业 [顺序链接MapReduce作业] mapreduce-1 | mapr ...
- [Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
- Hadoop专业解决方案-第13章 Hadoop的发展趋势
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,经过两周的努力,已经有啦初步的成果,目前第13章 Hadoop的发展趋势小组已经翻译完成,在此对 ...
- [hadoop读书笔记] 第四章 Hadoop I/O操作
P92 压缩 P102 序列化 序列化:将结构化对象转为字节流便于在网上传输或写到磁盘进行永久性存储的过程 用于进程之间的通信或者数据的永久存储 反序列化:将字节流转为结构化对象的逆过程 Hadoop ...
- [Hadoop in Action] 第2章 初识Hadoop
Hadoop的结构组成 安装Hadoop及其3种工作模式:单机.伪分布和全分布 用于监控Hadoop安装的Web工具 1.Hadoop的构造模块 (1)NameNode(名字节点) ...
- Hadoop专业解决方案-第12章 为Hadoop应用构建企业级的安全解决方案
一.前言: 非常感谢Hadoop专业解决方案群:313702010,兄弟们的大力支持,在此说一声辛苦了,春节期间,项目进度有所延迟,不过元宵节以后大家已经步入正轨, 目前第12章 为Hadoop应用构 ...
随机推荐
- DAO层,Service层,Controller层、View层 的分工合作
DAO层:DAO层主要是做数据持久层的工作,负责与数据库进行联络的一些任务都封装在此,DAO层的设计首先是设计DAO的接口,然后在Spring的配置文件中定义此接口的实现类,然后就可在模块中调用此接口 ...
- 学习日记-从爬虫到接口到APP
最近都在复习J2E,多学习一些东西肯定是好的,而且现在移动开发工作都不好找了,有工作就推荐一下小弟呗,广州佛山地区,谢谢了. 这篇博客要做的效果很简单,就是把我博客的第一页每个条目显示在APP上,条目 ...
- (转)倾力总结40条常见的移动端Web页面问题解决方案
原文链接:戳这里 1.安卓浏览器看背景图片,有些设备会模糊. 用同等比例的图片在PC机上很清楚,但是手机上很模糊,原因是什么呢? 经过研究,是devicePixelRatio作怪,因为手机分辨率太 ...
- 【原】Masonry+UIScrollView的使用注意事项
[原]Masonry+UIScrollView的使用注意事项 本文转载请注明出处 —— polobymulberry-博客园 1.问题描述 我想实现的使用在一个UIScrollView依次添加三个UI ...
- ffmpeg用法及如何使用fluent-ffmpeg
http://ffmpeg.org/ 官网 ffmpeg(命令行工具) 是一个快速的音视频转换工具. 1.分离视频音频流 ffmpeg -i input_file -vcodec copy -an o ...
- 最全面的百度地图JavaScript离线版开发
转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/5822231.html 项目要求web版百度地图要离线开发.这里总结下自己的开发过程和经验. 大概需求是:每辆 ...
- 排版紧凑情况下IOS 浏览器的文字部分选中问题
一.需求 一个每一项都是图文混排的列表页,在需要对其中的某一部分文字进行选中copy的时候,IOS个二货每次都是直接选中了整个列表项,无论怎么操作它的选框都没有办法做到部分选中. 这是我本周遇到遇到的 ...
- Spring IoC源码解析——Bean的创建和初始化
Spring介绍 Spring(http://spring.io/)是一个轻量级的Java 开发框架,同时也是轻量级的IoC和AOP的容器框架,主要是针对JavaBean的生命周期进行管理的轻量级容器 ...
- 4.JAVA之GUI编程事件监听机制
事件监听机制的特点: 1.事件源 2.事件 3.监听器 4.事件处理 事件源:就是awt包或者swing包中的那些图形用户界面组件.(如:按钮) 事件:每一个事件源都有自己特点有的对应事件和共性事件. ...
- c#+handle.exe实现升级程序在运行时自动解除文件被占用的问题
我公司最近升级程序经常报出更新失败问题,究其原因,原来是更新时,他们可能又打开了正在被更新的文件,导致更新文件时,文件被其它进程占用,无法正常更新而报错,为了解决这个问题,我花了一周时间查询多方资料及 ...