Lucky Coins Sequence

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 608 Accepted Submission(s): 319

Problem Description
As we all know,every coin has two sides,with one side facing up and another side facing down.Now,We consider two coins's state is same if they both facing up or down.If we have N coins and put them in a line,all of us know that it will be 2^N different ways.We call a "N coins sequence" as a Lucky Coins Sequence only if there exists more than two continuous coins's state are same.How many different Lucky Coins Sequences exist?
 
Input
There will be sevaral test cases.For each test case,the first line is only a positive integer n,which means n coins put in a line.Also,n not exceed 10^9.
 
Output
You should output the ways of lucky coins sequences exist with n coins ,but the answer will be very large,so you just output the answer module 10007.
 
Sample Input
3
4
 
Sample Output
2
6
 
Source
分析题意,我们可以发现就是dp,怎么求递推公式呢?dp[i][j]表示,有i位长,j最后几位是相连的!

dp[i][3]=dp[i-1][2];

dp[i][2]=dp[i-1][1];

dp[i][1]=dp[i-1][1]+dp[i-1][2];

dp[1][1]=2;dp[1][2]=0;dp[1][3]=0;

这样,我们就可以转化为矩阵求和了!

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define mod 10007 struct node {
int m[4][4];
node operator *(node b) const//重载乘法
{
int i,j,k;
node c;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
{
c.m[i][j]=0;
for(k=0;k<4;k++)
{
c.m[i][j]+=m[i][k]*b.m[k][j];
c.m[i][j]%=mod;//都要取模
}
}
return c;
}
};
node original,result;
void quickm(int n)
{
node a,b;
b=original;a=result;
while(n)
{
if(n&1)
{
b=b*a;
}
n=n>>1;
a=a*a;
}
printf("%d\n",2*b.m[0][3]%mod);
}
int main ()
{ int i,j,n;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
{
original.m[i][j]=(i==j)?1:0;//初始化为单位矩阵
}
memset(result.m,0,sizeof(result.m));
result.m[0][0]=result.m[0][1]=result.m[1][0]=result.m[1][2]=result.m[2][3]=1;
result.m[3][3]=2;
while(scanf("%d",&n)!=EOF)
{ quickm(n);
}
return 0;
}

poj3519 Lucky Coins Sequence矩阵快速幂的更多相关文章

  1. HDU5950 Recursive sequence (矩阵快速幂加速递推) (2016ACM/ICPC亚洲赛区沈阳站 Problem C)

    题目链接:传送门 题目: Recursive sequence Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total ...

  2. HDU5950 Recursive sequence —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5950 Recursive sequence Time Limit: 2000/1000 MS (Java/Others)   ...

  3. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  4. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

  5. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  6. HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)

    Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...

  7. HDU - 1005 Number Sequence 矩阵快速幂

    HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...

  8. HDU - 1005 -Number Sequence(矩阵快速幂系数变式)

    A number sequence is defined as follows:  f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...

  9. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

随机推荐

  1. javascript系列之DOM(二)

    原文:javascript系列之DOM(二) 原生DOM扩展 我们接着第一部分来说,上文提到了两种常规的DOM操作:创建文档片段和遍历元素节点.我们知道那些雨后春笋般的库,有很大一部分工作就是提供了一 ...

  2. ABP入门教程

    ABP入门教程 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目)”的简称. ASP.NET Boilerplate是一个用最佳实践和流行技术开发现代WEB应 ...

  3. crawler_google工作原理

  4. cralwer_爬虫代理中心的简要设计

    代理中心: 简单讲: 精细化控制限制资源的使用,保证有限资源的充分利用及有效性.支持动态增减,实时更新. 需求 rest api提供请求输入与输出 客户端使用代理心跳接收,用于更新代理的使用次数,被占 ...

  5. 怎样用LINQ或EF生成NOT IN和IN语句

    例如:有一个问卷表Questionnaire和一个活动与问卷的关系表ActivityOption_Questionnaire,现在我们要找出不在活动中的问卷. 用lambda实现方法如下: var n ...

  6. Oracle\MS SQL Server Update多表关联更新

    原文:Oracle\MS SQL Server Update多表关联更新 一条Update更新语句是不能更新多张表的,除非使用触发器隐含更新.而表的更新操作中,在很多情况下需要在表达式中引用要更新的表 ...

  7. kobox : key_waitqueue.c -v1 如何内核线程,如何使用等待队列

    平台:TQ2440 按键驱动 (1)在init中创建一个内核线程作为等待队列的处理函数,该内核线程是一个while(1)死循环,一直检測等待队列的触发条件 DECLARE_WAIT_QUEUE_HEA ...

  8. 【转】Appium基于安卓的各种FindElement的控件定位方法实践

    原文地址:http://blog.csdn.net/zhubaitian/article/details/39754041#t11 AppiumDriver的各种findElement方法的尝试,尝试 ...

  9. 堆VS栈

    c#堆VS栈(Part One) 前言 本文主要是讲解C#语言在内存中堆.栈的使用情况,使读者能更好的理解值类型.引用类型以及线程栈.托管堆. 首先感谢原文作者:Matthew Cochran 为我们 ...

  10. STL之sort函数的用法

    说明:本文仅供学习交流,转载请标明出处,欢迎转载! STL封装了一个排序算法,该算法相应的头文件为#include<algorithm>,我们能够依据须要对一个数组进行排序或者降序. so ...