数据分析R语言

无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/course/34,非常不错的网站,站长的Q群是323370861(这个群的童鞋们都很给力,学习也很上进,各种团购买hadoop,nosql,spark的视频学习),我网站会员ID是515,也欢迎各方朋友交流,OK,开始

       统计的一些基础概念,如下图所示,

       数据分析常用到的一些算法(下图貌似是Spss modeler里面的缩略图),常用的聚类,分类,维度归约,回归预测,时间序列算法都有
 
一、基本操作
 
创建向量和矩阵(我以前的博客里面写过R相关的基本入门,感兴趣的请移步http://www.cnblogs.com/kobedeshow/p/3339760.html)
计算平均,和,最小值,最大值,方差,标准差,练乘
 
帮助函数
例如 min 这个函数 我不知道什么意思,那么可以help(min)或者?min
 
产生向量
1:10*2+1等价于(1:10)*2+1,R编程的一个最基本的特点是向量化编程,不能套用C或JAVA语言里面的迭代思想,否则写出来的程序性能很差
a[-5] 相当于就第五个元素不显示,其他都显示
a[-(1:3)]相当于就第1,2,3个元素不显示,其他都显示
a[a<20] 首先a<20 会判断每个元素是否<20,是就是true,否就是flase,返回这样的向量index,,最后显示a[index]
seq函数 seq(5,20)从5开始到20,默认步长是1,by=2步长为2
 
which函数 ,返回元素下标
 
matrix()函数,默认是按列存储,参数byrow=T设置按行存储
 
矩阵转置函数t()、加减操作
矩阵相乘,注意是a%*%b,如果a*b这表示两个矩阵的对应元素相乘
矩阵求逆--solve() rnorm(16) 是返回16个符合正态分布的随机数(默认均值=0,方差=1)
 
线性方程组求解--solve(a,b)  形如 a*X=b
 
特征值跟特征向量 eigen()  A*特征向量矩阵=特征值矩阵*特征向量矩阵
 
向量,矩阵,数组,向量一维,矩阵二维,数组多维,这三种结构必须要同一类型的元素(字符,数字,逻辑),如果要包含多种类型元素请使用数据框(很强大的东东,python里面的数据分析报pandas就是使用了这种数据结构)
 
 
数据框
 
文件读取,head=T表示读取头文件,数据读取可以安装ODBC包等
 
循环语句
for循环
 
while循环
 
概率分布函数,具体的参数可以help(*)
 
 
二、图形操作
直方图
列联表分析(列联函数table())
 
散点图(变量间的相关性,类似线性回归里面,画残差散点图)
饼图
箱线图(经常会用到,可以看出数据的散度,是否稳定),箱子的上线跟下线表示第一,三个四分位数,最两端的直线等于(第一个四分位+最小值)/2和(第三个四分位+最大值)/2(不知道有没有记错),外面的小圆圈表示异常值
boxplot(x1,x2,x3)
 
星相图(对每个样本画一个星状,几条线代表样本有几个属性,线的长短代表值的大小)
stars(x1,x2,x3)
脸谱图(用处不是很大,适合小样本,看都看累了,呵呵)
茎叶图(下面表示,有61,64,65,66,。。。)
 
QQ图(检验是否是正态分布,直线斜率是标准差,截距是均值,点的分布越接近直线,就越接近正态分布)
热力图(横坐标表示样本特征,纵坐标是样本,颜色深浅表示值的不同
散点图集(plot(iris[,1:4]也能产生这样的效果))
叠加图(画子图)
 
三、相关分析跟回归分析
相关分析
分析两个变量的相关性,R中可以计算多种相关系数,包括pearson,spearman,kendall相关系数,可以用cor(x,method=pearson/spearman/kendall)
可以画出特征散点矩阵,观察两两特征变量的相关性
 
 
回归分析
关于回归的解释,在这里就不详细说了,R中可以用lm()函数,例如fit <- lm(weight~height,data=women)
会得出数据集women中,height跟weight间的回归方程
summary(fit),分别有call、residuals的5个统计量(每个样本的回归拟合残差的统计)、coefficients(每个自变量的回归系数)
普通的线性回归,要满足数据的正态性、自变量之间独立性、自变量跟因变量之间线性和同方差性。
如果违反上面的假设,可以考虑别的回归模型,逐步回归、决策树回归,kernel 岭回归等,这里就不细说了
 
下部预告:
常见分类算法(logistic回归,线性判别式LDA,贝叶斯NB,决策树DT,神经网络,最近邻)
关联规则分析(apriori,序列模式prefixspan,包括简要说下mapreduce版的fp-growth)
聚类算法(层次聚类,谱聚类,K均值/中心)
维度归约(PCA,SVD,ICA)
 
 
分类: R系列
 

数据分析R语言1的更多相关文章

  1. 数据分析R语言(1)

    无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/cours ...

  2. 【数据分析 R语言实战】学习笔记 第十一章 对应分析

    11.2对应分析 在很多情况下,我们所关心的不仅仅是行或列变量本身,而是行变量和列变量的相互关系,这就是因子分析等方法无法解释的了.1970年法国统计学家J.P.Benzenci提出对应分析,也称关联 ...

  3. 【数据分析 R语言实战】学习笔记 第四章 数据的图形描述

    4.1 R绘图概述 以下两个函数,可以分别展示二维,三维图形的示例: >demo(graphics) >demo(persp) R提供了多种绘图相关的命令,可分成三类: 高级绘图命令:在图 ...

  4. 【数据分析 R语言实战】学习笔记 第三章 数据预处理 (下)

    3.3缺失值处理 R中缺失值以NA表示,判断数据是否存在缺失值的函数有两个,最基本的函数是is.na()它可以应用于向量.数据框等多种对象,返回逻辑值. > attach(data) The f ...

  5. 经典书单、站点 —— 大数据/数据分析/R语言

    1. 科普.入门 <大数据智能>,刘知远.崔安顺等著: 特色:系统,宏观和全面: 2. R 语言站点 http://langdawei.com/:R 语言数据采集与可视化:

  6. 【数据分析 R语言实战】学习笔记 第五章 数据的描述性分析(下)

    5.6 多组数据分析及R实现 5.6.1 多组数据的统计分析 > group=read.csv("C:/Program Files/RStudio/002582.csv") ...

  7. 【数据分析 R语言实战】学习笔记 第八章 方差分析与R实现

    方差分析泛应用于商业.经济.医学.农业等诸多领域的数量分析研究中.例如商业广告宣传方面,广告效果可能会受广告式.地区规模.播放时段.播放频率等多个因素的影响,通过方差分析研究众多因素中,哪些是主要的以 ...

  8. 【数据分析 R语言实战】学习笔记 第七章 假设检验及R实现

    假设检验及R实现 7.1假设检验概述 对总体参数的具体数值所作的陈述,称为假设;再利用样本信息判断假设足否成立,这整个过程称为假设检验. 7.1.1理论依据 假设检验之所以可行,其理沦背景是小概率理论 ...

  9. 【数据分析 R语言实战】学习笔记 第六章 参数估计与R实现(下)

    6.3两正态总体的区间估计 (1)两个总体的方差已知 在R中编写计算置信区间的函数twosample.ci()如下,输入参数为样本x, y,置信度α和两个样本的标准差. > twosample. ...

随机推荐

  1. eclipse+Java2WSDL+WSDL2Java 2012-12-06 12:32:43| 分类: j2ee |报道|字体大小 认购 一、eclipse如何使用低axis生成wsdl 可以使用

    eclipse+Java2WSDL+WSDL2Java 一.eclipse下怎样用axis生成wsdl 能够使用axis提供的Java2WSDL功能生成所要公布类的 WSDL,过程例如以下:  1.在 ...

  2. MongoDB初学者的配置环境和基础设施的使用

    一个.mongoDB安装 1.第一MongoDB官方网站下载安装包http://www.mongodb.org/. 依照自己的操作系统进行下载. 2.在硬盘上建立两个文件夹分辨存放mongoDB安装文 ...

  3. BST(Binary Search Tree)

    原文链接:http://blog.csdn.net/jarily/article/details/8679280 /****************************************** ...

  4. Web前端开发实用的Chrome插件

    Web前端开发实用的Chrome插件 越来越多的前端开发人员喜欢在Chrome里开发调试代码,Chrome有许多优秀的插件可以帮助前端开发人员极大的提高工作效率.尤其Chrome本身是可以登录的,登录 ...

  5. javascript继承—继承的实现原理(1)

    原文:javascript继承-继承的实现原理(1) 打算针对js的继承写一系列文章,详细的分析js里继承原理,实现方式,各种继承方式的优缺点,以及最优继承方案,还有多继承的问题等…. 面向对象的编程 ...

  6. bootstrap-wysiwyg 结合 base64 解码 .net bbs 图片操作类

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Dr ...

  7. asp.net JSON(一)

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  8. 基于tomcat为了应对高并发模型实现webserver

    在博客上,一个简单的AIOweb来样加工.查看AIO异步处理,依靠操作系统完成IO操作Proactor处理模型确实很强大,它可以实现高并发.高响应server一个很好的选择,但在tomcat中间con ...

  9. mysql监控、性能调优及三范式理解

    原文:mysql监控.性能调优及三范式理解 1监控 工具:sp on mysql     sp系列可监控各种数据库 2调优 2.1 DB层操作与调优 2.1.1.开启慢查询 在My.cnf文件中添加如 ...

  10. MVC扩展ModelBinder使类型为DateTime的Action参数可以接收日期格式的字符串

    原文:MVC扩展ModelBinder使类型为DateTime的Action参数可以接收日期格式的字符串 如何让视图通过某种途径,把符合日期格式的字符串放到路由中,再传递给类型为DateTime的控制 ...