Reference:http://mp.weixin.qq.com/s?src=3&timestamp=1474985436&ver=1&signature=at24GKibwNNoE9VsETitURyMHzXYeytp1MoUyAFx-2WOZTdPelAdJBv9nkMPyczdr4riYdUZWOaUInIFOxWELVDugvJJxpeEgp5KWDFFtwR8VYalYfPvdWdrmi*Qoq9shyPnROU3Tch32ieV9V8clw==

现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他们过来问我:”该如何开始?”。一段时间以前,我在一个俄罗斯联邦政府的下属机构中领导了媒体和社交网络大数据分析工具的开发。我仍然有一些我团队使用过的文档,我乐意与你们分享。前提是读者已经有很好的数学和机器学习方面的知识(我的团队主要由MIPT(莫斯科物理与技术大学)和数据分析学院的毕业生构成)。

这篇文章是对数据科学的简介,这门学科最近太火了。机器学习的竞赛也越来越多(如,Kaggle, TudedIT),而且他们的资金通常很可观。

R和Python是提供给数据科学家的最常用的两种工具。每一个工具都有其优缺点,但Python最近在各个方面都有所胜出(仅为鄙人愚见,虽然我两者都用)。这一切的发生是因为Scikit-Learn库的腾空出世,它包含有完善的文档和丰富的机器学习算法。

请注意,我们将主要在这篇文章中探讨机器学习算法。通常用Pandas包去进行主数据分析会比较好,而且这很容易你自己完成。所以,让我们集中精力在实现上。为了确定性,我们假设有一个特征-对象矩阵作为输入,被存在一个*.csv文件中。

数据加载

首先,数据要被加载到内存中,才能对其操作。Scikit-Learn库在它的实现用使用了NumPy数组,所以我们将用NumPy来加载*.csv文件。让我们从UCI Machine Learning Repository下载其中一个数据集。

import numpy as np

import urllib

# url with dataset

url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"

# download the file

raw_data = urllib.urlopen(url)

# load the CSV file as a numpy matrix

dataset = np.loadtxt(raw_data, delimiter=",")

# separate the data from the target attributes

X = dataset[:,0:7]

y = dataset[:,8]

我们将在下面所有的例子里使用这个数据组,换言之,使用X特征物数组和y目标变量的值。

数据标准化

我们都知道大多数的梯度方法(几乎所有的机器学习算法都基于此)对于数据的缩放很敏感。因此,在运行算法之前,我们应该进行标准化,或所谓的规格化。标准化包括替换所有特征的名义值,让它们每一个的值在0和1之间。而对于规格化,它包括数据的预处理,使得每个特征的值有0和1的离差。Scikit-Learn库已经为其提供了相应的函数。

from sklearn import metrics

from sklearn.ensemble import ExtraTreesClassifier

model = ExtraTreesClassifier()

model.fit(X, y)

# display the relative importance of each attribute

print(model.feature_importances_)

特征的选取

 

毫无疑问,解决一个问题最重要的是是恰当选取特征、甚至创造特征的能力。这叫做特征选取和特征工程。虽然特征工程是一个相当有创造性的过程,有时候更多的是靠直觉和专业的知识,但对于特征的选取,已经有很多的算法可供直接使用。如树算法就可以计算特征的信息量。

from sklearn import metrics

from sklearn.ensemble import ExtraTreesClassifier

model = ExtraTreesClassifier()

model.fit(X, y)

# display the relative importance of each attribute

print(model.feature_importances_)

其他所有的方法都是基于对特征子集的高效搜索,从而找到最好的子集,意味着演化了的模型在这个子集上有最好的质量。递归特征消除算法(RFE)是这些搜索算法的其中之一,Scikit-Learn库同样也有提供。

from sklearn.feature_selection import RFE

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

# create the RFE model and select 3 attributes

rfe = RFE(model, 3)

rfe = rfe.fit(X, y)

# summarize the selection of the attributes

print(rfe.support_)

print(rfe.ranking_)

算法的开发

正像我说的,Scikit-Learn库已经实现了所有基本机器学习的算法。让我来瞧一瞧它们中的一些。

逻辑回归

大多数情况下被用来解决分类问题(二元分类),但多类的分类(所谓的一对多方法)也适用。这个算法的优点是对于每一个输出的对象都有一个对应类别的概率。

from sklearn import metrics

from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

朴素贝叶斯

它也是最有名的机器学习的算法之一,它的主要任务是恢复训练样本的数据分布密度。这个方法通常在多类的分类问题上表现的很好。

from sklearn import metrics

from sklearn.naive_bayes import GaussianNB

model = GaussianNB()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

k-最近邻

kNN(k-最近邻)方法通常用于一个更复杂分类算法的一部分。例如,我们可以用它的估计值做为一个对象的特征。有时候,一个简单的kNN算法在良好选择的特征上会有很出色的表现。当参数(主要是metrics)被设置得当,这个算法在回归问题中通常表现出最好的质量。

from sklearn import metrics

from sklearn.neighbors import KNeighborsClassifier

# fit a k-nearest neighbor model to the data

model = KNeighborsClassifier()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

决策树

分类和回归树(CART)经常被用于这么一类问题,在这类问题中对象有可分类的特征且被用于回归和分类问题。决策树很适用于多类分类。

from sklearn import metrics

from sklearn.tree import DecisionTreeClassifier

# fit a CART model to the data

model = DecisionTreeClassifier()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

支持向量机

SVM(支持向量机)是最流行的机器学习算法之一,它主要用于分类问题。同样也用于逻辑回归,SVM在一对多方法的帮助下可以实现多类分类。

from sklearn import metrics

from sklearn.svm import SVC

# fit a SVM model to the data

model = SVC()

model.fit(X, y)

print(model)

# make predictions

expected = y

predicted = model.predict(X)

# summarize the fit of the model

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

除了分类和回归问题,Scikit-Learn还有海量的更复杂的算法,包括了聚类, 以及建立混合算法的实现技术,如Bagging和Boosting。

如何优化算法的参数

在编写高效的算法的过程中最难的步骤之一就是正确参数的选择。一般来说如果有经验的话会容易些,但无论如何,我们都得寻找。幸运的是Scikit-Learn提供了很多函数来帮助解决这个问题。

作为一个例子,我们来看一下规则化参数的选择,在其中不少数值被相继搜索了:

import numpy as np

from sklearn.linear_model import Ridge

from sklearn.grid_search import GridSearchCV

# prepare a range of alpha values to test

alphas = np.array([1,0.1,0.01,0.001,0.0001,0])

# create and fit a ridge regression model, testing each alpha

model = Ridge()

grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas))

grid.fit(X, y)

print(grid)

# summarize the results of the grid search

print(grid.best_score_)

print(grid.best_estimator_.alpha)

有时候随机地从既定的范围内选取一个参数更为高效,估计在这个参数下算法的质量,然后选出最好的。

import numpy as np

from scipy.stats import uniform as sp_rand

from sklearn.linear_model import Ridge

from sklearn.grid_search import RandomizedSearchCV

# prepare a uniform distribution to sample for the alpha parameter

param_grid = {'alpha': sp_rand()}

# create and fit a ridge regression model, testing random alpha values

model = Ridge()

rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100)

rsearch.fit(X, y)

print(rsearch)

# summarize the results of the random parameter search

print(rsearch.best_score_)

print(rsearch.best_estimator_.alpha)

至此我们已经看了整个使用Scikit-Learn库的过程,除了将结果再输出到一个文件中。这个就作为你的一个练习吧,和R相比Python的一大优点就是它有很棒的文档说明。

在下一篇文章中,我们将深入探讨其他问题。我们尤其是要触及一个很重要的东西——特征的建造。我真心地希望这份材料可以帮助新手数据科学家尽快开始解决实践中的机器学习问题。最后,我祝愿那些刚刚开始参加机器学习竞赛的朋友拥有耐心以及马到成功!

基于 Python 和 Scikit-Learn 的机器学习介绍的更多相关文章

  1. 一个高性能跨平台基于Python的Waitress WSGI Server的介绍!

    对于Python来说,它有很多web框架,常见的有jango.Flask.Tornado .sanic等,比如Odoo.Superset都基于Flask框架进行开发的开源平台,具有强大的功能.在Lin ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. 初识TPOT:一个基于Python的自动化机器学习开发工具

    1. TPOT介绍 一般来讲,创建一个机器学习模型需要经历以下几步: 数据预处理 特征工程 模型选择 超参数调整 模型保存 本文介绍一个基于遗传算法的快速模型选择及调参的方法,TPOT:一种基于Pyt ...

  4. 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台

    搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...

  5. 基于python的知乎开源爬虫 zhihu_oauth使用介绍

    今天在无意之中发现了一个知乎的开源爬虫,是基于Python的,名字叫zhihu_oauth,看了一下在github上面star数还挺多的,貌似文档也挺详细的,于是就稍微研究了一下.发现果然很好用啊.就 ...

  6. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  7. Python 基于python操纵zookeeper介绍

    基于python操纵zookeeper介绍 by:授客  QQ:1033553122 测试环境 Win7 64位 Python 3.3.4 kazoo-2.6.1-py2.py3-none-any.w ...

  8. Python 基于python操纵redis入门介绍

    基于python操纵redis入门介绍 by:授客  QQ:1033553122 测试环境 redis-3.0.7 CentOS 6.5-x86_64 python 3.3.2 基于Python操作R ...

  9. 基于Python的机器学习实战:KNN

    1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应 ...

  10. 基于Python操作redis介绍

    (注:本文部分内容摘自互联网,由于作者水平有限,不足之处,还望留言指正.) 毕业前的最后一个学期(2016.03),龙哥结婚了.可是总有些人喜欢嘲笑别人,调侃我.当时我就理直气壮的告诉他们,等龙哥孩子 ...

随机推荐

  1. 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 243  Solved: 167[S ...

  2. C# devExpress GridControl 统计行总数

    dev我不怎么会用,边学边记: 如果要在gridControl 页面底部统计记录总数只需两步: 1:设置显示gridControl页脚 2,.设置统计列: DevExpress.XtraGrid.Co ...

  3. zf-关于荆州图片链接和弹出页面问题

    target="_blank" 属性不能写在div 里 所以我在里面加了个a标签 这个属性的作用就是弹出一个新的页面,不会在原先的页面上换地址 如果 style 的加载图片卸载cs ...

  4. 我也谈javascript闭包的原理理解

    参考原文:http://www.oschina.net/question/28_41112 前言:还是一篇入门文章.Javascript中有几个非常重要的语言特性——对象.原型继承.闭包.其中闭包 对 ...

  5. Object.wait()与Object.notify()的用法

    http://www.cnblogs.com/xwdreamer/archive/2012/05/12/2496843.html 参考文献: object.wait()和object.notify() ...

  6. JAVA List<T> 如何初始化

    通常用法:List<类型> list=new ArrayList<类型>();List是一个接口,不可实例化,通过实例化其实现类来使用List集合,他的最常用实现类ArrayL ...

  7. cc2530 寄存器PICTL理解

  8. MySQL5.7中使用JSON(一)

    因为项目需要,存储字段存储成了JSON格式,在项目中是将查询出来的值通过jackson转成相应的bean进行处理的,觉得不够简单方便. 偶然下,知道了MYSQL5.7原生支持SQL,今天一回来就折腾安 ...

  9. ural1671 Anansi's Cobweb

    Anansi's Cobweb Time limit: 1.0 secondMemory limit: 64 MB Usatiy-Polosatiy XIII decided to destroy A ...

  10. 微信小程序实例教程(三)

    第七章:微信小程序编辑名片页面开发   编辑名片有两条路径,分为新增名片流程与修改名片流程. 用户手填新增名片流程:   首先跳转到我们的新增名片页面 1 需要传递用户的当前 userId,wx.na ...