【BZOJ1221】【HNOI2001】软件开发 [费用流]
软件开发
Time Limit: 10 Sec Memory Limit: 162 MB
[Submit][Status][Discuss]
Description
某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA,
B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。
Input
第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn.
Output
最少费用
Sample Input
8 2 1 6
Sample Output
HINT
1≤f,fA,fB≤60,1≤n≤1000
Main idea
每天要用Ni块餐巾,有如下几种选择:
1.买新的,每块f元;
2.用A方式处理,a天后得到餐巾,每块花费fA元;
3.用B方式处理,b天后得到餐巾,每块花费fB元。
问满足要求的最小花费。
Solution
显然是费用流,拆成两个点,Xi表示用完的,Yi表示需要的,那么建模显然:(令x表示这天需要多少餐巾)
S->Xi 流量为x,费用为0, mean:这天需要这么多;
Yi->T 流量为x,费用为0, mean:这天需要这么多;
S->Yi 流量为INF,费用为f, mean:全部买新的;
Xi->Xi+1 流量为INF,费用为0, mean:把这天用完的餐巾放到下一天处理;
Xi->Yi+a+1 流量为INF,费用为fA, mean:用A方式处理;
Xi->Yi+b+1 流量为INF,费用为fB, mean:用B方式处理。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int EDG = ;
const int INF = ; int n,a,b,f,fA,fB;
int x;
int X[ONE],Y[ONE];
int S,T;
int next[EDG],first[ONE],go[EDG],from[EDG],pas[EDG],w[EDG],tot;
int dist[ONE],pre[ONE],vis[ONE];
int tou,wei,q[ONE];
int Ans; inline int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Add(int u,int v,int flow,int z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; from[tot]=u; pas[tot]=flow; w[tot]=z;
next[++tot]=first[v]; first[v]=tot; go[tot]=u; from[tot]=v; pas[tot]=; w[tot]=-z;
} bool Bfs()
{
for(int i=S;i<=T;i++) dist[i] = INF;
dist[S] = ; vis[S] = ;
tou = ; wei = ; q[] = S;
while(tou < wei)
{
int u = q[++tou];
for(int e=first[u]; e; e=next[e])
{
int v = go[e];
if(dist[v] > dist[u] + w[e] && pas[e])
{
dist[v] = dist[u] + w[e]; pre[v] = e;
if(!vis[v])
{
vis[v] = ;
q[++wei] = v;
}
}
}
vis[u] = ;
}
return dist[T] != INF;
} void Deal()
{
int x = INF;
for(int e=pre[T]; e; e=pre[from[e]]) x = min(x,pas[e]);
for(int e=pre[T]; e; e=pre[from[e]])
{
pas[e] -= x;
pas[((e-)^)+] += x;
Ans += x*w[e];
}
} int main()
{
n=get(); a=get(); b=get();
f=get(); fA=get(); fB=get();
S=; T=n*+;
for(int i=;i<=n;i++) X[i]=i, Y[i]=i+n;
for(int i=;i<=n;i++)
{
x = get();
Add(S,X[i], x,);
Add(Y[i],T, x,);
Add(S,Y[i], INF,f);
if(i!=n) Add(X[i],X[i+], INF,);
if(Y[i]+a+ < T)Add(X[i],Y[i]+a+, INF,fA);
if(Y[i]+b+ < T)Add(X[i],Y[i]+b+, INF,fB);
} while(Bfs()) Deal();
printf("%d",Ans); }
【BZOJ1221】【HNOI2001】软件开发 [费用流]的更多相关文章
- BZOJ1221 [HNOI2001]软件开发 - 费用流
题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...
- bzoj 1221 [HNOI2001] 软件开发 费用流
[HNOI2001] 软件开发 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1938 Solved: 1118[Submit][Status][D ...
- 【bzoj1221】[HNOI2001] 软件开发 费用流
题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...
- BZOJ 1221 [HNOI2001] 软件开发 费用流_建模
题目描述: 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供 ...
- bzoj1221软件开发 费用流
题目传送门 思路: 网络流拆点有的是“过程拆点”,有的是“状态拆点”,这道题应该就属于状态拆点. 每个点分需要用的,用完的. 对于需要用的,这些毛巾来自新买的和用过的毛巾进行消毒的,流向终点. 对于用 ...
- bzoj1221: [HNOI2001] 软件开发
挖坑.我的那种建图方式应该也是合理的.然后连样例都过不了.果断意识到应该为神奇建图法... #include<cstdio> #include<cstring> #includ ...
- 【费用流】bzoj1221 [HNOI2001] 软件开发
几乎为“线性规划与网络流24题”中的餐巾问题. 这里把S看成毛巾的来源,T看成软件公司,我们的目的就是让每天的毛巾满足要求(边满流). 引用题解: [问题分析] 网络优化问题,用最小费用最大流解决. ...
- BZOJ1221 [HNOI2001] 软件开发 【费用流】
题目 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛 ...
- BZOJ 1221 软件开发(费用流)
容易看出这是显然的费用流模型. 把每天需要的餐巾数作为限制.需要将天数拆点,x’表示每天需要的餐巾,x’’表示每天用完的餐巾.所以加边 (s,x',INF,0),(x'',t,INF,0). 餐巾可以 ...
随机推荐
- [贪心经典算法]Kruskal算法
Kruskal算法的高效实现需要一种称作并查集的结构.我们在这里不介绍并查集,只介绍Kruskal算法的基本思想和证明,实现留在以后讨论. Kruskal算法的过程: (1) 将全部边按照权值由小到大 ...
- TCP系列34—窗口管理&流控—8、缓存自动调整
一.概述 我们之前介绍过一种具有大的带宽时延乘积(band-delay product.BDP)的网络,这种网络称为长肥网络(LongFatNetwork,即LFN).我们想象一种简单的场景,假设发送 ...
- 转 【关于api-ms-win-crt-runtimel1-1-0.dll缺失的解决方案】
关于api-ms-win-crt-runtimel1-1-0.dll缺失的解决方案 目录 关于api-ms-win-crt-runtimel1-1-0dll缺失的解决方案 目录 安装VC redite ...
- windows批处理学习(字符换操作)---04
转自:https://www.cnblogs.com/DswCnblog/p/5432326.html 1.截取字符串 截取字符串可以说是字符串处理功能中最常用的一个子功能了,能够实现截取字符串中的特 ...
- Jmeter系列-自动生成html报告
从JMeter 3.0开始已支持自动生成动态报告,我们可以更容易根据生成的报告来完成我们的性能测试报告. 如何生成html测试报告 如果未生成结果文件(.jtl),可运行如下命令生成报告: jmete ...
- [剑指Offer] 60.把二叉树打印成多行
题目描述 从上到下按层打印二叉树,同一层结点从左至右输出.每一层输出一行. [思路]使用队列实现二叉树的层次遍历. /* struct TreeNode { int val; struct TreeN ...
- c#对xml的操作
操作xml可以通过XElement对象,比较方便的使用列举以下几点: 把字符串转变成XElement,保存成xml文件,加载xml文件: //把字符串解析成XElement对象 string str ...
- 转:概率主题模型简介 --- ---David M. Blei所写的《Introduction to Probabilistic Topic Models》的译文
概率主题模型简介 Introduction to Probabilistic Topic Models 转:http://www.cnblogs.com/siegfang/archive/2 ...
- [洛谷P3793]由乃救爷爷
题目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值.保证数据随机 题解:分块,处理 ...
- hihoCoder#1838 : 鎕鎕鎕 贪心
---题面--- 题解: 神奇的贪心题,,,感觉每次做贪心题都无从下手... 我们首先按照a对所有卡片从小到大排序,然后从1开始,从连续的两张牌中取b最大的,最后一张单出来的也取了. 可以证明,这样的 ...