【状压DP】BZOJ2734-[HNOI2012]集合选数
已经八月份了药丸,开始肝作业并且准备高考啦!!
【题目大意】
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。现在求以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果)(包括空集)。
【思路】
对于n以内任意与6互质的整数x,我们列出一个矩阵:
x 3x 9x 27x ...
2x 6x 18x 54x ...
4x 12x 36x 108x ...
所以我们现在枚举与6互质的这个数x,然后进行状态压缩的转移。这个有点类似于先前的king。f[i][j]表示到第i行,且第i行状态为j的总可能性。不过它并不一定是矩形,每一行的列数可能不同,对于某行列数为j,我们只需枚举0..2^j-1的状态,并记录为before转移到下一行DP。
这里用了滚动数组,不过不要忘记每次新的滚动数组都要清空一下。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000001
using namespace std;
typedef long long LL;
const int MAXN=;
int n;
int usable[<<MAXN],f[][<<MAXN];
bool mark[<<MAXN]; int Usable(int x)
{
if (x<<&x || x>>&x) return ;else return ;
} int dp(int now)
{
memset(f,,sizeof(f));
int cur=,before=-;//before指上一行有几个数
for (int i=;now*(<<i)<=n;i++)//枚举每一行的第一个数,求出总的行数
{
cur=-cur;
int tmp=now*(<<i),j;
for (j=;tmp<=n;j++,tmp*=);//求出每一行有几个数
for (int k=;k<(<<j);k++)//枚举当前行的状态
{
f[cur][k]=;//【不要忘记了初始化☆】
if (usable[k])
{
if (before==-) {f[cur][k]=;continue;}//如果是第一行,则将可行状态设为1
for (int p=;p<(<<before);p++)
if (usable[p])
if ((k&p)==) f[cur][k]=f[cur][k]+f[-cur][p],f[cur][k]%=mod;//这里不要忘记了也要mod
}
}
before=j;
}
int ans=;
for (int i=;i<(<<before);i++) ans+=f[cur][i],ans%=mod;
return (ans);
} void getusable()
{
memset(usable,,sizeof(usable));
for (int i=;i<(<<MAXN);i++)
if (Usable(i)) usable[i]=;
} void solve()
{
memset(mark,,sizeof(mark));
LL ans=;//为了防止乘法的时候溢出,可以先用longlong,再转换回int
for (int i=;i<=n;i++)
if ((i%)&&(i%)) ans=(ans*dp(i))%mod;
printf("%d\n",(int)ans);
} int main()
{
scanf("%d",&n);
getusable();
solve();
return ;
}
【状压DP】BZOJ2734-[HNOI2012]集合选数的更多相关文章
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
- bzoj2734: [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
随机推荐
- bzoj 2440 容斥原理
首先根据样例或者自己打表大概可以知道,对于询问k,答案不会超过k<<1,那么我们就可以二分答案,求当前二分的值内有多少个数不是完全平方数的倍数,这样就可以了,对于每个二分到的值x,其中完全 ...
- 转载 JAVA SE 连接ACCESS
本代码实现连接 本机数据库的方法. 操作步骤: 1.进入控制面板,打开“管理工具→数据源(ODBC)”,弹出“ODBC数据源管理器”,在“用户DSN”选项卡中,单击选中名称为“Visio Databa ...
- html meta标签作用
1.概要 标签提供关于HTML文档的元数据.元数据不会显示在页面上,但是对于机器是可读的.它可用于浏览器(如何显示内容或重新加载页面),搜索引擎(关键词),或其他web服务. 必要属性: conten ...
- SQL中char、nchar、varchar、nvarchar、text概述【转】
1. char char是定长的,也就是当你输入的字符小于你指定的数目时,char(8),你输入的字符小于8时,它会再后面补空值.当你输入的字符大于指定的数时,它会截取超出的字符. 2. nchar ...
- date 时间确定
获取当前时间: var date = new Date(); var year = date.getFullYear(); var month = date.getMonth() + 1; var d ...
- mybatis 一级缓存和二级缓存
1.默认是会话期内 一级session缓存 2.二级缓存: 引入二级缓存的jar, 配置 ehcache.xml, mapper.xml引入缓存<cache type="org.myb ...
- 切面保存web访问记录
package com.hn.xf.device.api.rest.aspect; import com.hn.xf.device.api.rest.authorization.manager.Tok ...
- MySQL建立高性能索引策略
索引永远是最好的查询解决方案嘛? 索引并不总是最好的工具.总的来说,只有当索引帮助存储引擎快速查找到记录带来的好处大于其带来的额外工作(比如插入操作后索引的维护)时,索引才是高效的. 对于非常小的表: ...
- Python+Selenium 自动化实现实例-Xpath捕捉元素的几种方法
#coding=utf-8import timefrom selenium import webdriverdriver = webdriver.Chrome()driver.get("ht ...
- 使用vue2.0 vue-router vuex 模拟ios7操作
其实你也可以,甚至做得更好... 首先看一下效果:用vue2.0实现SPA:模拟ios7操作 与 通讯录实现 github地址是:https://github.com/QRL909109/ios7 如 ...