【状压DP】BZOJ2734-[HNOI2012]集合选数
已经八月份了药丸,开始肝作业并且准备高考啦!!
【题目大意】
《集合论与图论》这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中。现在求以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果)(包括空集)。
【思路】
对于n以内任意与6互质的整数x,我们列出一个矩阵:
x 3x 9x 27x ...
2x 6x 18x 54x ...
4x 12x 36x 108x ...
所以我们现在枚举与6互质的这个数x,然后进行状态压缩的转移。这个有点类似于先前的king。f[i][j]表示到第i行,且第i行状态为j的总可能性。不过它并不一定是矩形,每一行的列数可能不同,对于某行列数为j,我们只需枚举0..2^j-1的状态,并记录为before转移到下一行DP。
这里用了滚动数组,不过不要忘记每次新的滚动数组都要清空一下。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mod 1000000001
using namespace std;
typedef long long LL;
const int MAXN=;
int n;
int usable[<<MAXN],f[][<<MAXN];
bool mark[<<MAXN]; int Usable(int x)
{
if (x<<&x || x>>&x) return ;else return ;
} int dp(int now)
{
memset(f,,sizeof(f));
int cur=,before=-;//before指上一行有几个数
for (int i=;now*(<<i)<=n;i++)//枚举每一行的第一个数,求出总的行数
{
cur=-cur;
int tmp=now*(<<i),j;
for (j=;tmp<=n;j++,tmp*=);//求出每一行有几个数
for (int k=;k<(<<j);k++)//枚举当前行的状态
{
f[cur][k]=;//【不要忘记了初始化☆】
if (usable[k])
{
if (before==-) {f[cur][k]=;continue;}//如果是第一行,则将可行状态设为1
for (int p=;p<(<<before);p++)
if (usable[p])
if ((k&p)==) f[cur][k]=f[cur][k]+f[-cur][p],f[cur][k]%=mod;//这里不要忘记了也要mod
}
}
before=j;
}
int ans=;
for (int i=;i<(<<before);i++) ans+=f[cur][i],ans%=mod;
return (ans);
} void getusable()
{
memset(usable,,sizeof(usable));
for (int i=;i<(<<MAXN);i++)
if (Usable(i)) usable[i]=;
} void solve()
{
memset(mark,,sizeof(mark));
LL ans=;//为了防止乘法的时候溢出,可以先用longlong,再转换回int
for (int i=;i<=n;i++)
if ((i%)&&(i%)) ans=(ans*dp(i))%mod;
printf("%d\n",(int)ans);
} int main()
{
scanf("%d",&n);
getusable();
solve();
return ;
}
【状压DP】BZOJ2734-[HNOI2012]集合选数的更多相关文章
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
- bzoj2734: [HNOI2012]集合选数
Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- BZOJ 2734: [HNOI2012]集合选数 [DP 状压 转化]
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 ...
随机推荐
- Python爬虫—破解JS加密的Cookie
前言 在GitHub上维护了一个代理池的项目,代理来源是抓取一些免费的代理发布网站.上午有个小哥告诉我说有个代理抓取接口不能用了,返回状态521.抱着帮人解决问题的心态去跑了一遍代码.发现果真是这样. ...
- python 学习笔记 sqlalchemy
数据库表是一个二维表,包含多行多列.把一个表的内容用Python的数据结构表示出来的话,可以用一个list表示多行,list的每一个元素是tuple,表示一行记录,比如,包含id和name的user表 ...
- Oracle 合并 merger into
merge into copy_emp1 c using employees e on (c.employee_id=e.employee_id)when matched then update ...
- 2017多校第6场 HDU 6105 Gameia 博弈
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6105 题意:Alice和Bob玩一个游戏,喷漆!现在有一棵树上边的节点最开始都没有被染色.游戏规则是: ...
- 2016多校第4场 HDU 6076 Security Check DP,思维
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6076 题意:现要检查两条队伍,有两种方式,一种是从两条队伍中任选一条检查一个人,第二种是在每条队伍中同 ...
- maven添加jar包到本地仓库
mvn install:install-file -Dfile=desutill.jar -DgroupId=com.bfd -DartifactId=des -Dversion=1.0 -Dpack ...
- hadoop 分布式环境安装
centos 多台机器免密登录 hadoop学习笔记(五)--全分布模式下SSH免密码登陆的实现 参考安装教程 Hadoop-2.7.4 集群快速搭建 启动hadoop cd /opt/soft/ha ...
- 小程序 image跟view标签上下会有空隙
解决方案 就是可以在image那里设置vertical-align:top/bottom/text-top/text-bottom 原因:图片文字等inline元素默许是跟父级元素的baseline对 ...
- JAVA二叉树的创建以及各种功能的实现
直接上代码了,代码说得很清楚了 package BTree; public class BTree { private Node root; private class Node { private ...
- Java学习笔记(三)——静态导入,package-info,Fall-through
[前面的话] 算是真正的放松了好几天时间,没有看任何书,没有任何任务,今天是过完年后的第一天上班时间,我又开始了我的学习之路,感觉还没有老,怎么心态越来越平静了,进入工作状态,就好好努力工作,新的一年 ...