1962 马棚问题

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 黄金 Gold
题目描述 Description

每天,小明和他的马外出,然后他们一边跑一边玩耍。当他们结束的时候,必须带所有的马返回马棚,小明有K个马棚。他把他的马排成一排然后跟随它走向马棚,因为他们非常疲劳,小明不想让他的马做过多的移动。因此他想了一个办法:将马按照顺序放在马棚中,后面的马放的马棚的序号不会大于前面的马放的马棚的序号。而且,他不想他的K个马棚中任何一个空置,也不想任何一匹马在外面。已知共有黑、白两种马,而且它们相处得并不十分融洽。如果有i个白马和j个黑马在一个马棚中,那么这个马棚的不愉快系数将是i*j。所有k个马棚不愉快系数的和就是系数总和。确定一种方法把n匹马放入k个马棚,使得系数总和最小

输入描述 Input Description

输入:在第一行有两个数字:n(1≤n≤500)和k(1≤k≤n)。在接下来的n行是n个数。在这些行中的第i行代表队列中的第i匹马的颜色:1意味着马是黑色的,0意味着马是白色的。

输出描述 Output Description

输出:只输出一个单一的数字,代表系数总和可能达到的最小值

样例输入 Sample Input

6 3

1

1

0

1

0

1

样例输出 Sample Output

2

/*典型的序列性DP,f[i][j]记录前i匹马,分到j个马棚里的最小不愉快系数,p[i][j]储存着i到j这个区间的马在一个马棚里的不愉快系数,house[i]储存着到地i匹马总共有多少匹白马,多少匹黑马*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
using namespace std;
#define N 501
int f[N][N],p[N][N];
struct House{
int a;int b;
};
House house[N];
int n,k;
void input()
{
scanf("%d%d",&n,&k);
int x;
for(int i=;i<=n;++i)
{
scanf("%d",&x);
house[i].a=house[i-].a;
house[i].b=house[i-].b;
if(x==) house[i].a++;
if(x==) house[i].b++;
}
for(int i=;i<=n-;++i)/*对于p数组的预处理特别重要*/
for(int j=i+;j<=n;++j)
{
int r1=abs(house[i-].a-house[j].a);
int r2=abs(house[i-].b-house[j].b);
p[i][j]=r1*r2;
}
memset(f,,sizeof(f));
for(int i=;i<=n;++i)
f[i][]=p[][i];/*DP方程的边界,前i个马在一个马棚的不愉快系数*/
}
void dp()
{
for(int j=;j<=k;++j)
for(int i=j;i<=n;++i)
for(int t=j-;t<=i-;++t)
f[i][j]=min(f[i][j],f[t][j-]+p[t+][i]);/*DP方程前i匹马,分到j个马棚里的最小不愉快系数,就是把j-1<=t<=i-1匹马放到j-1个马棚中,其余t+1到i匹马在一个马棚中的不愉快系数最小值*/
}
int main()
{
input();
dp();
cout<<f[n][k]<<endl;
return ;
}
 

codevs 1962 马棚问题--序列型DP的更多相关文章

  1. 1134 最长上升子序列 (序列型 DP)

    思路: 由于一般的动态规划时间复杂度是O(n^2)(哈哈哈哈 第一次用的就是这个!)用在这里由于n最大为50000 所以会超时 到这里我们可以用一个数组来动态维护这个最长上升的子序列,将你要输入的子序 ...

  2. leetcode动态规划笔记三---单序列型

    单序列型DP 相比一维DP,这种类型状态转移与过去每个阶段的状态都有关. Longest Increasing Subsequence : 求最大最小值 Perfect Squares : 求某个规模 ...

  3. 区间型DP

    区间型DP是一类经典的动态规划问题,主要特征是可以先将大区间拆分成小区间求解最后由小区间的解得到大区间的解. 有三道例题 一.石子合并 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆. ...

  4. 「bzoj1925」「Sdoi2010」地精部落 (计数型dp)

    「bzoj1925」「Sdoi2010」地精部落---------------------------------------------------------------------------- ...

  5. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  6. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  7. POJ_1088 滑雪(记忆型DP+DFS)

    Description Michael喜欢滑雪,这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  8. UVA12186--树型DP

    树型DP第一题...就是从boss到底层员工是一个树型结构,底层员工想加薪,如果每个boss都有超过T%的员工要求加薪,他就会往更高的bOSs传达,问如果让根节点的大boss接到加薪要求,最少要有多少 ...

  9. POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断

    好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...

随机推荐

  1. Python标准库笔记(4) — collections模块

    这个模块提供几个非常有用的Python容器类型 1.容器 名称 功能描述 OrderedDict 保持了key插入顺序的dict namedtuple 生成可以使用名字来访问元素内容的tuple子类 ...

  2. Linux内核死锁检测机制【转】

    转自:http://www.oenhan.com/kernel-deadlock-check 死锁就是多个进程(线程)因为等待别的进程已占有的自己所需要的资源而陷入阻塞的一种状态,死锁状态一旦形成,进 ...

  3. Mongo 配置文件 [www]

    Mongo 配置文件  [www] http://blog.chinaunix.net/uid-25206403-id-3510934.html mongodb 安装使用 http://blog.si ...

  4. core dump使用方法、设置、测试用例

    core dump使用方法.设置.测试用例 http://blog.csdn.net/liuzhuchen/article/details/21975227

  5. 【模板】BZOJ 3781: 小B的询问 莫队算法

    http://www.lydsy.com/JudgeOnline/problem.php?id=3781 N个数的序列,每次询问区间中每种数字出现次数的平方和,可以离线. 丢模板: #include ...

  6. Linux下通过jstat命令查看jvm的GC情况

    jstat命令可以查看堆内存各部分的使用量,以及加载类的数量.命令的格式如下: jstat [-命令选项] [vmid] [间隔时间/毫秒] [查询次数]  注意!!!:使用的jdk版本是jdk8. ...

  7. Hadoop(hadoop,HBase)组件import到eclipse

    1.简介: 将源代码import到eclipse可以方便的阅读和修改源码. 2.环境说明: mac mvn工具(Apache Maven 3.3.3 ) 3.hadoop(CDH5.4.2) 1.进入 ...

  8. JDBC数据源连接池(2)---C3P0

    我们接着<JDBC数据源连接池(1)---DBCP>继续介绍数据源连接池. 首先,在Web项目的WebContent--->WEB-INF--->lib文件夹中添加C3P0的j ...

  9. 一位资深程序员大牛给予Java初学者的学习建议

    这一部分其实也算是今天的重点,这一部分用来回答很多群里的朋友所问过的问题,那就是我你是如何学习Java的,能不能给点建议?   今天我是打算来点干货,因此咱们就不说一些学习方法和技巧了,直接来谈每个阶 ...

  10. 如何配置Java环境,包括JDK,Maven等

    下载JDK并安装 搜索JDK,官网立马就出来了,下载之后个人觉得毕竟开发,毕竟这东西不大,C盘稳一点,安装在C盘可以的 配置 右键打开计算机->属性->高级系统设置->高级-> ...