https://www.lydsy.com/JudgeOnline/problem.php?id=4518

https://www.luogu.org/problemnew/show/P4072

Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m^2。

设第i段划分路的长度为ai,则不难推导出答案为m*sigma(a^2)-(sigma(a))^2。

维护前缀和s[i],于是设f[i]为前i条路的最少费用,就有f[i]=min(f[i],f[j]+(s[[i]-s[j])^2)。

愉快的斜率优化维护,大致操作跟BZOJ3675 & 洛谷3648 & UOJ104:[Apio2014]序列分割一样(是的这两道题几乎相同,可能式子不一样……?)复杂度O(nm)。

……然而这道题是在去apio之后看的wuvin课件写的,于是……这其实是裸的wqs二分。

二分划分代价为c,c越大划分次数越少,反之越多(因为c减小时,显然答案在原基础上变得更小,可以选择不继续划分(当然答案还是比原来小),或者可以多花点c来划分序列,于是划分一定变多。)将划分次数逼近为m则此时即为答案。

复杂度O(nlogV)快到不知道哪里去了,这题n可以为1e5。

#include<queue>
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double dl;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m,q[N],g[N];
ll s[N],f[N];
inline ll sqr(ll x){return x*x;}
inline dl suan(int k,int j){
if(s[k]==s[j])return -1e18;
return (dl)(f[k]-f[j]+sqr(s[k])-sqr(s[j]))/(s[k]-s[j]);
}
bool pan(ll c){
int l=,r=;
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(dl)*s[i])l++;
f[i]=f[q[l]]+sqr(s[i]-s[q[l]])+c;
g[i]=g[q[l]]+;
while(l<r&&suan(q[r-],q[r])>suan(q[r],i))r--;
q[++r]=i;
}
return g[n]<=m;
}
ll solve(ll l,ll r){
ll ans;
while(l<r){
ll mid=(l+r)>>;
if(!pan(mid))l=mid+;
else{
ans=m*(f[n]-mid*m)-sqr(s[n]);r=mid;//这里括号里面的m改为g[n]就会wa不知道为什么有谁能解答一下吗
//主要是感觉最后反正g[n]也会变成m就乘了g[n]结果就90分了……
}
}
return ans;
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)s[i]=s[i-]+read();
printf("%lld\n",solve(,sqr(s[n])));
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4518:[SDOI2016]征途——题解的更多相关文章

  1. BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *

    BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...

  2. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  3. BZOJ4518: [Sdoi2016]征途

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  4. [luogu4072][bzoj4518][SDOI2016]征途【动态规划+斜率优化】

    题目分析 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  5. [bzoj4518][Sdoi2016]征途-斜率优化

    Brief Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须 ...

  6. BZOJ4518: [Sdoi2016]征途(dp+斜率优化)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1875  Solved: 1045[Submit][Status][Discuss] Descript ...

  7. bzoj4518: [Sdoi2016]征途--斜率DP

    题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...

  8. 2018.09.08 bzoj4518: [Sdoi2016]征途(斜率优化dp)

    传送门 把式子展开后发现就是要求: m∗(∑i=1msum′[i])−sum[n]2" role="presentation" style="position: ...

  9. bzoj4518: [Sdoi2016]征途(DP+决策单调性分治优化)

    题目要求... 化简得... 显然m和sum^2是已知的,那么只要让sigma(si^2)最小,那就变成了求最小平方和的最小值,经典的决策单调性,用分治优化即可. 斜率优化忘得差不多就不写了 #inc ...

随机推荐

  1. SpringBoot学习:获取yml和properties配置文件的内容

    项目下载地址:http://download.csdn.net/detail/aqsunkai/9805821 (一)yml配置文件: pom.xml加入依赖: <!-- 支持 @Configu ...

  2. 抽样分布(3) F分布

    定义 设U~χ2(n1), V~χ2(n2),且U,V相互独立,则称随机变量 服从自由度为(n1,n2)的F分布,记为F~F(n1,n2),其中n1叫做第一自由度,n2叫做第二自由度. F分布的概率密 ...

  3. Restify Api 开发经验

    此文已由作者王振华授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 工作期间,一直在用Restify开发或维护大大小小的API系统,现在分享一下一些个人觉得不错的Tips. 充 ...

  4. linux 解压命令大全[转]

    本文转自:  http://www.cnblogs.com/eoiioe/archive/2008/09/20/1294681.html .tar 解包:tar xvf FileName.tar打包: ...

  5. 使用git bash编译安装sysbench时遇到的坑

      Preface       When I was compiling the sysbench just now,I encountered some failures in the preced ...

  6. 苏醒的巨人----CSRF

    一.CSRF 跨站请求伪造(Cross-Site Request Forgery,CSRF)是指利用 受害者尚未失效的身份认证信息(cookie.会话等),诱骗其点 击恶意链接或者访问包含攻击代码的页 ...

  7. 第四模块:网络编程进阶&数据库开发 第2章·MySQL数据库开发

    01-MySQL开篇 02-MySQL简单介绍 03-不同平台下安装MySQL 04-Windows平台MySQL密码设置与破解 05-Linux平台MySQL密码设置与破解 06-Mac平台MySQ ...

  8. C 基本运算

    一 算术运算 C语言一共有34种运算符 包括了常见的加减乘除运算 1. 加法运算+ 除开能做加法运算 还能表示正号: +5, +90 2. 减法运算- 除开能做减法运算 还能表示符号: -10, -2 ...

  9. DeepLearning Intro - sigmoid and shallow NN

    This is a series of Machine Learning summary note. I will combine the deep learning book with the de ...

  10. SpringBoot日志配置(详解) 涉及控制台输出日志、生成日志文件、日志级别修改、hibernate日志不输出

    写在前面 本篇主要讲述日志配置,看完本篇可以解决下述问题, 控制台输出日志.生成日志文件.日志级别修改.hibernate日志不输出 Git Demo Path:https://github.com/ ...