Abstract: This article discusses how you can generate your own 3-dimensional mesh for visualizing mathematical functions using Delphi XE2 and FireMonkey.

Prerequisites!

This article assumes that you are familiar with the basics of 3D graphics, including meshes and textures.

The goal!

The goal is to graph a function like sin(x*x+z*z)/(x*x+z*z) in three dimensions using brilliant colors, as the image below shows:

Hide image

Generating the mesh

The easiest way to generate a mesh is to use the Data.Points and Data.TriangleIndices of the TMesh object. However, these two properties are strings, and they get parsed in order to generate the mesh at runtime (and design time if populated at design time). This parsing is pretty time consuming, in fact, in this particular case about 65 times as slow as using the internal buffers. Therefore we will instead be using the non-published properties Data.VertexBuffer and Data.IndexBuffer.

In our example we will iterate along the X-axis from -30 to +30, and the same for the Z-axis. The function we're graphing gives us the value for Y for each point.

Step 1: Generating the wire frame

The image below shows a sparse wire frame representing the surface f = exp(sin x + cos z). Shown in red is one of the squares. Each square gets split into two triangles in order to generate the mesh. The mesh is simply built up from all of the triangles that we get when we iterate over the XZ plane.

Hide image

We name the corners of the square P0, P1, P2 and P3:

Hide image

The two triangles now become (P1,P2,P3) and (P3,P0,P1).

Given that u is somewhere on the X-axis, v is somewhere on the Z-axis, and that d is our delta step, the code to set up these four points in the XZ-plane becomes:

P[0].x := u;
P[0].z := v; P[1].x := u+d;
P[1].z := v; P[2].x := u+d;
P[2].z := v+d; P[3].x := u;
P[3].z := v+d;

Now we calculate the corresponding function values for the Y component of each point. f is our function f(x,z).

P[0].y := f(P[0].x,P[0].z);
P[1].y := f(P[1].x,P[1].z);
P[2].y := f(P[2].x,P[2].z);
P[3].y := f(P[3].x,P[3].z);

The points are now fully defined in all three dimensions. Next, we plug them into the mesh.

with VertexBuffer do begin
Vertices[0] := P[0];
Vertices[1] := P[1];
Vertices[2] := P[2];
Vertices[3] := P[3];
end;

That part was easy. Now we need to tell the mesh which points make up which triangles. We do that like so:

// First triangle is (P1,P2,P3)
IndexBuffer[0] := 1;
IndexBuffer[1] := 2;
IndexBuffer[2] := 3; // Second triangle is (P3,P0,P1)
IndexBuffer[3] := 3;
IndexBuffer[4] := 0;
IndexBuffer[5] := 1;

Step 2: Generating the texture

In order to give the mesh some color, we create a texture bitmap that looks like this:

This is simply a HSL color map where the hue goes from 0 to 359 degrees. The saturation and value are fixed.

The code to generate this texture looks like this:

BMP := TBitmap.Create(1,360); // This is actually just a line
for k := 0 to 359 do
BMP.Pixels[0,k] := HSLtoRGB(k/360,0.75,0.5);

Step 3: Mapping the texture onto the wire frame

Finally, we need to map the texture onto the mesh. This is done using the TexCoord0 array. Each item in the TexCoord0 array is a point in a square (0,0)-(1,1) coordinate system. Since we're mapping to a texture that is just a line, our x-coordinate is always 0. The y-coordinate is mapped into (0,1), and the code becomes:

with VertexBuffer do begin
TexCoord0[0] := PointF(0,(P[0].y+35)/45);
TexCoord0[1] := PointF(0,(P[1].y+35)/45);
TexCoord0[2] := PointF(0,(P[2].y+35)/45);
TexCoord0[3] := PointF(0,(P[3].y+35)/45);
end;

Putting it all together

The full code to generate the entire mesh is listed below:

function f(x,z : Double) : Double;
var
temp : Double;
begin
temp := x*x+z*z;
if temp < Epsilon then
temp := Epsilon; Result := -2000*Sin(temp/180*Pi)/temp;
end; procedure TForm1.GenerateMesh;
const
MaxX = 30;
MaxZ = 30;
var
u, v : Double;
P : array [0..3] of TPoint3D;
d : Double;
NP, NI : Integer;
BMP : TBitmap;
k : Integer;
begin
Mesh1.Data.Clear; d := 0.5; NP := 0;
NI := 0; Mesh1.Data.VertexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*4;
Mesh1.Data.IndexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*6; BMP := TBitmap.Create(1,360);
for k := 0 to 359 do
BMP.Pixels[0,k] := CorrectColor(HSLtoRGB(k/360,0.75,0.5)); u := -MaxX;
while u < MaxX do begin
v := -MaxZ;
while v < MaxZ do begin
// Set up the points in the XZ plane
P[0].x := u;
P[0].z := v;
P[1].x := u+d;
P[1].z := v;
P[2].x := u+d;
P[2].z := v+d;
P[3].x := u;
P[3].z := v+d; // Calculate the corresponding function values for Y = f(X,Z)
P[0].y := f(Func,P[0].x,P[0].z);
P[1].y := f(Func,P[1].x,P[1].z);
P[2].y := f(Func,P[2].x,P[2].z);
P[3].y := f(Func,P[3].x,P[3].z); with Mesh1.Data do begin
// Set the points
with VertexBuffer do begin
Vertices[NP+0] := P[0];
Vertices[NP+1] := P[1];
Vertices[NP+2] := P[2];
Vertices[NP+3] := P[3];
end; // Map the colors
with VertexBuffer do begin
TexCoord0[NP+0] := PointF(0,(P[0].y+35)/45);
TexCoord0[NP+1] := PointF(0,(P[1].y+35)/45);
TexCoord0[NP+2] := PointF(0,(P[2].y+35)/45);
TexCoord0[NP+3] := PointF(0,(P[3].y+35)/45);
end; // Map the triangles
IndexBuffer[NI+0] := NP+1;
IndexBuffer[NI+1] := NP+2;
IndexBuffer[NI+2] := NP+3;
IndexBuffer[NI+3] := NP+3;
IndexBuffer[NI+4] := NP+0;
IndexBuffer[NI+5] := NP+1;
end; NP := NP+4;
NI := NI+6; v := v+d;
end;
u := u+d;
end; Mesh1.Material.Texture := BMP;
end;

Demo application

You can find my demo application that graphs 5 different mathematical functions in CodeCentral. Here are a few screen shots from the application:

Hide imageHide imageHide imageHide image

Contact

Please feel free to email me with feedback to aohlsson at embarcadero dot com

 
http://edn.embarcadero.com/article/42007

Visualizing mathematical functions by generating custom meshes using FireMonkey(很美)的更多相关文章

  1. Visualizing wave interference using FireMonkey(很美)

      Visualizing wave interference using FireMonkey By: Anders Ohlsson Abstract: This article discusses ...

  2. Part 14 Mathematical functions in sql server

    Part 29 Mathematical functions in sql server

  3. NVIDIA CG语言 函数之所有数学类函数(Mathematical Functions)

    数学类函数(Mathematical Functions) abs(x) 返回标量和向量x的绝对值 如果x是向量,则返回每一个成员的绝对值 acos(x) 返回标量和向量x的反余弦 x的范围是[-1, ...

  4. Custom Grid Columns - FireMonkey Guide

    原文 http://monkeystyler.com/guide/Custom-Grid-Columns ack to FireMonkey Topics As we saw in TGrid a F ...

  5. [翻译] Using Custom Functions in a Report 在报表中使用自己义函数

    Using Custom Functions in a Report  在报表中使用自己义函数   FastReport has a large number of built-in standard ...

  6. [HIve - LanguageManual] Hive Operators and User-Defined Functions (UDFs)

    Hive Operators and User-Defined Functions (UDFs) Hive Operators and User-Defined Functions (UDFs) Bu ...

  7. [Hive - Tutorial] Built In Operators and Functions 内置操作符与内置函数

    Built-in Operators Relational Operators The following operators compare the passed operands and gene ...

  8. Generating Complex Procedural Terrains Using GPU

    前言:感慨于居然不用tesselation也可以产生这么复杂的地形,当然致命的那个关于不能有洞的缺陷还是没有办法,但是这个赶脚生成的已经足够好了,再加上其它模型估 计效果还是比较震撼的.总之好文共分享 ...

  9. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

随机推荐

  1. 多线程-wait/notify/notifyAll

    引言 在Java中,可以通过配合调用Object对象的wait,notify和notifyAll来实现线程间的通信. 在线程中调用wait方法,将阻塞带带其他线程的通知(其他线程调用notify或no ...

  2. C#.NET中使用BackgroundWorker在模态对话框中显示进度条

    这里是一个示例,其中展示了如何使用Backgroundworker对象在模态对话框中显示后台操作的实时进度条. 首先是主窗体代码: using System; using System.Collect ...

  3. Java中的四种引用类型,强引用,软引用,弱引用,虚引用

    对于Java中的垃圾回收机制来说,对象是否被回收的标准在于该对象是否被引用.因此,引用也是JVM进行内存管理的一个重要概念. Java中对象的引用一般有以下4种类型: 1强引用  2软引用  3弱引用 ...

  4. C1编译器的实现

    总览 词法.语法分析 分析方案 词法 语法 符号表 类型系统 AST 语义检查 EIR代码生成器 MIPS代码生成器 寄存器分配 体系结构相关特性优化 使用说明 编译 运行 总览 C1语言编译器及流程 ...

  5. CSRF学习笔记之CSRF的攻击与防御以及审计【00x2 】

    Medium完整代码: <?php if (isset($_GET['Change'])) { // Checks the http referer header if ( eregi ( &q ...

  6. PHP文件包含

    今天突然发现这个东西有好多奇怪的东西,特别写一下记一下 测试用的1.txt及phpinfo.php内容都是phpinfo() 截断: 好多.和好多./截断:这里不测试了,摘自代码审计一书,5.2可用, ...

  7. hive2.1.1配置

    hive2.1.1配置 首先在conf下复制hive-site.xml <property> <name>javax.jdo.option.ConnectionURL</ ...

  8. jQuery 实战读书笔记之第二章:选择元素

    基本选择器 html 代码如下,后面的 js 使用的 html 基本大同小异. <!doctype html> <html> <head> <title> ...

  9. php调用C代码的实现方法

    在php程序中需要用到C代码,应该是下面两种情况: 1 已有C代码,在php程序中想直接用2 由于php的性能问题,需要用C来实现部分功能 针对第一种情况,最合适的方法是用system调用,把现有C代 ...

  10. ssd算法的pytorch实现与解读

    首先先放下github地址:https://github.com/acm5656/ssd_pytorch 然后放上参考的代码的github地址:https://github.com/amdegroot ...