Visualizing mathematical functions by generating custom meshes using FireMonkey(很美)
Abstract: This article discusses how you can generate your own 3-dimensional mesh for visualizing mathematical functions using Delphi XE2 and FireMonkey.
Prerequisites!
This article assumes that you are familiar with the basics of 3D graphics, including meshes and textures.
The goal!
The goal is to graph a function like sin(x*x+z*z)/(x*x+z*z) in three dimensions using brilliant colors, as the image below shows:
Generating the mesh
The easiest way to generate a mesh is to use the Data.Points and Data.TriangleIndices of the TMesh object. However, these two properties are strings, and they get parsed in order to generate the mesh at runtime (and design time if populated at design time). This parsing is pretty time consuming, in fact, in this particular case about 65 times as slow as using the internal buffers. Therefore we will instead be using the non-published properties Data.VertexBuffer and Data.IndexBuffer.
In our example we will iterate along the X-axis from -30 to +30, and the same for the Z-axis. The function we're graphing gives us the value for Y for each point.
Step 1: Generating the wire frame
The image below shows a sparse wire frame representing the surface f = exp(sin x + cos z). Shown in red is one of the squares. Each square gets split into two triangles in order to generate the mesh. The mesh is simply built up from all of the triangles that we get when we iterate over the XZ plane.
We name the corners of the square P0, P1, P2 and P3:
The two triangles now become (P1,P2,P3) and (P3,P0,P1).
Given that u is somewhere on the X-axis, v is somewhere on the Z-axis, and that d is our delta step, the code to set up these four points in the XZ-plane becomes:
P[0].x := u;
P[0].z := v; P[1].x := u+d;
P[1].z := v; P[2].x := u+d;
P[2].z := v+d; P[3].x := u;
P[3].z := v+d;
Now we calculate the corresponding function values for the Y component of each point. f is our function f(x,z).
P[0].y := f(P[0].x,P[0].z);
P[1].y := f(P[1].x,P[1].z);
P[2].y := f(P[2].x,P[2].z);
P[3].y := f(P[3].x,P[3].z);
The points are now fully defined in all three dimensions. Next, we plug them into the mesh.
withVertexBufferdobegin
Vertices[0] := P[0];
Vertices[1] := P[1];
Vertices[2] := P[2];
Vertices[3] := P[3];
end;
That part was easy. Now we need to tell the mesh which points make up which triangles. We do that like so:
// First triangle is (P1,P2,P3)
IndexBuffer[0] := 1;
IndexBuffer[1] := 2;
IndexBuffer[2] := 3;// Second triangle is (P3,P0,P1)
IndexBuffer[3] := 3;
IndexBuffer[4] := 0;
IndexBuffer[5] := 1;
Step 2: Generating the texture
In order to give the mesh some color, we create a texture bitmap that looks like this:

This is simply a HSL color map where the hue goes from 0 to 359 degrees. The saturation and value are fixed.
The code to generate this texture looks like this:
BMP := TBitmap.Create(1,360);// This is actually just a line
fork := 0to359do
BMP.Pixels[0,k] := HSLtoRGB(k/360,0.75,0.5);
Step 3: Mapping the texture onto the wire frame
Finally, we need to map the texture onto the mesh. This is done using the TexCoord0 array. Each item in the TexCoord0 array is a point in a square (0,0)-(1,1) coordinate system. Since we're mapping to a texture that is just a line, our x-coordinate is always 0. The y-coordinate is mapped into (0,1), and the code becomes:
withVertexBufferdobegin
TexCoord0[0] := PointF(0,(P[0].y+35)/45);
TexCoord0[1] := PointF(0,(P[1].y+35)/45);
TexCoord0[2] := PointF(0,(P[2].y+35)/45);
TexCoord0[3] := PointF(0,(P[3].y+35)/45);
end;
Putting it all together
The full code to generate the entire mesh is listed below:
functionf(x,z : Double) : Double;
var
temp : Double;
begin
temp := x*x+z*z;
iftemp < Epsilonthen
temp := Epsilon; Result := -2000*Sin(temp/180*Pi)/temp;
end;procedureTForm1.GenerateMesh;
const
MaxX = 30;
MaxZ = 30;
var
u, v : Double;
P :array[0..3]ofTPoint3D;
d : Double;
NP, NI : Integer;
BMP : TBitmap;
k : Integer;
begin
Mesh1.Data.Clear; d := 0.5; NP := 0;
NI := 0; Mesh1.Data.VertexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*4;
Mesh1.Data.IndexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*6; BMP := TBitmap.Create(1,360);
fork := 0to359do
BMP.Pixels[0,k] := CorrectColor(HSLtoRGB(k/360,0.75,0.5)); u := -MaxX;
whileu < MaxXdobegin
v := -MaxZ;
whilev < MaxZdobegin
// Set up the points in the XZ plane
P[0].x := u;
P[0].z := v;
P[1].x := u+d;
P[1].z := v;
P[2].x := u+d;
P[2].z := v+d;
P[3].x := u;
P[3].z := v+d;// Calculate the corresponding function values for Y = f(X,Z)
P[0].y := f(Func,P[0].x,P[0].z);
P[1].y := f(Func,P[1].x,P[1].z);
P[2].y := f(Func,P[2].x,P[2].z);
P[3].y := f(Func,P[3].x,P[3].z);withMesh1.Datadobegin
// Set the points
withVertexBufferdobegin
Vertices[NP+0] := P[0];
Vertices[NP+1] := P[1];
Vertices[NP+2] := P[2];
Vertices[NP+3] := P[3];
end;// Map the colors
withVertexBufferdobegin
TexCoord0[NP+0] := PointF(0,(P[0].y+35)/45);
TexCoord0[NP+1] := PointF(0,(P[1].y+35)/45);
TexCoord0[NP+2] := PointF(0,(P[2].y+35)/45);
TexCoord0[NP+3] := PointF(0,(P[3].y+35)/45);
end;// Map the triangles
IndexBuffer[NI+0] := NP+1;
IndexBuffer[NI+1] := NP+2;
IndexBuffer[NI+2] := NP+3;
IndexBuffer[NI+3] := NP+3;
IndexBuffer[NI+4] := NP+0;
IndexBuffer[NI+5] := NP+1;
end; NP := NP+4;
NI := NI+6; v := v+d;
end;
u := u+d;
end; Mesh1.Material.Texture := BMP;
end;
Demo application
You can find my demo application that graphs 5 different mathematical functions in CodeCentral. Here are a few screen shots from the application:
Contact
Please feel free to email me with feedback to aohlsson at embarcadero dot com
Visualizing mathematical functions by generating custom meshes using FireMonkey(很美)的更多相关文章
- Visualizing wave interference using FireMonkey(很美)
Visualizing wave interference using FireMonkey By: Anders Ohlsson Abstract: This article discusses ...
- Part 14 Mathematical functions in sql server
Part 29 Mathematical functions in sql server
- NVIDIA CG语言 函数之所有数学类函数(Mathematical Functions)
数学类函数(Mathematical Functions) abs(x) 返回标量和向量x的绝对值 如果x是向量,则返回每一个成员的绝对值 acos(x) 返回标量和向量x的反余弦 x的范围是[-1, ...
- Custom Grid Columns - FireMonkey Guide
原文 http://monkeystyler.com/guide/Custom-Grid-Columns ack to FireMonkey Topics As we saw in TGrid a F ...
- [翻译] Using Custom Functions in a Report 在报表中使用自己义函数
Using Custom Functions in a Report 在报表中使用自己义函数 FastReport has a large number of built-in standard ...
- [HIve - LanguageManual] Hive Operators and User-Defined Functions (UDFs)
Hive Operators and User-Defined Functions (UDFs) Hive Operators and User-Defined Functions (UDFs) Bu ...
- [Hive - Tutorial] Built In Operators and Functions 内置操作符与内置函数
Built-in Operators Relational Operators The following operators compare the passed operands and gene ...
- Generating Complex Procedural Terrains Using GPU
前言:感慨于居然不用tesselation也可以产生这么复杂的地形,当然致命的那个关于不能有洞的缺陷还是没有办法,但是这个赶脚生成的已经足够好了,再加上其它模型估 计效果还是比较震撼的.总之好文共分享 ...
- [中英双语] 数学缩写列表 (List of mathematical abbreviations)
List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...
随机推荐
- vsftp 虚拟用户高级设置(转载)
发布:xiaokk 来源:net [大 中 小] vsftp 虚拟用户高级设置 本文转自:http://www.jbxue.com/article/1724.html 1.安装所需软件包 ...
- Atitit.jquery 版本新特性attilax总结
Atitit.jquery 版本新特性attilax总结 1. Jq1.4 1 2. 1.5 1 3. 1.6 3 4. Jq1.7 3 ⒉提升了事件委派时的性能有了大幅度的提升,尤其是在ie7下: ...
- [svc][jk][mem]linux 内存清理/释放命令
1.清理前内存使用情况 free -m 2.开始清理 echo 1 > /proc/sys/vm/drop_caches 3.清理后内存使用情况 free -m 4.完成! 查看内存条数命令: ...
- PHPCMS 学习
1.碎片管理2.为了升级操作 MY_ thinkphp为大写phpcms里面也是大写 然后继承如果加构造函数要调用一次父类的构造函数,最好在最上面调用 final 不可重写 重写最好调用一次paren ...
- 使用SQLite
SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成. Python就 ...
- Tomcat 学习进阶历程之Tomcat架构与核心类分析
前面的http及socket两部分内容,主要是为了后面看Tomcat源代码而学习的一些网络基础.从这章開始.就開始实际深入到Tomcat的'内在'去看一看. 在分析Tomcat的源代码之前,准备先看一 ...
- iptables详细教程:基础、架构、清空规则、追加规则、应用实例(转)
iptables防火墙可以用于创建过滤(filter)与NAT规则.所有Linux发行版都能使用iptables,因此理解如何配置iptables将会帮助你更有效地管理Linux防火墙.如果你是第一次 ...
- php socket 模型及效率问题
// 创建套接字 socket_create(); // 绑定 socket_bind(); // 监听 socket_listen(); // 主体, 死循环 while(true){ // sel ...
- Jquery学习笔记(10)--ajax删除用户,使用了js原生ajax
主要复习了php的pdo数据库操作,和js的ajax,真麻烦,希望jquery的ajax简单点. index.php: <!DOCTYPE html> <html lang=&quo ...
- java对象实现深复制的方法
p2 = (Person)org.apache.commons.lang3.ObjectUtils.cloneBean(p); Person p2 = new Person(); p2 = (Pers ...

