class numpy.random.RandomState(seed=None)
  RandomState 是一个基于Mersenne Twister算法的伪随机数生成类
  RandomState 包含很多生成 概率分布的伪随机数 的方法。

  如果指定seed值,那么每次生成的随机数都是一样的。即对于某一个伪随机数发生器,只要该种子相同,产生的随机数序列就是相同的。

numpy.random.RandomState.rand(d0, d1, ..., dn)
  Random values in a given shape.
  Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).
  rand()函数产生 [0,1)间的均匀分布的指定维度的 伪随机数
  Parameters:
    d0, d1, …, dn : int, optional
      The dimensions of the returned array, should all be positive. If no argument is given a single Python float is returned.

  Returns:
    out : ndarray, shape (d0, d1, ..., dn)
      Random values.

numpy.random.RandomState.uniform(low=0.0, high=1.0, size=None)
  Draw samples from a uniform distribution.
  Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high). In other words, any value within the given interval is equally likely to be drawn by uniform.
  uniform()函数产生 [low,high)间的 均匀分布的指定维度的 伪随机数
  Parameters:
  low : float or array_like of floats, optional
    Lower boundary of the output interval. All values generated will be greater than or equal to low. The default value is 0.
  high : float or array_like of floats
    Upper boundary of the output interval. All values generated will be less than high. The default value is 1.0.
  size : int or tuple of ints, optional
    Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn.
    If size is None (default), a single value is returned if low and high are both scalars. Otherwise, np.broadcast(low, high).size samples are drawn.

  Returns:
    out : ndarray or scalar
      Drawn samples from the parameterized uniform distribution.

有时候我们需要自己模拟构造 输入数据(矩阵),那么这种随机数的生成是一种很好的方式。

 # -*- coding: utf-8 -*-
"""
Created on Tue May 29 12:14:11 2018 @author: Frank
""" import numpy as np #基于seed产生随机数
rng = np.random.RandomState(seed)
print(type(rng)) #生成[0,1)间的 32行2列矩阵
X=rng.rand(32, 2)
print("X.type{}".format(type(X)))
print(X) #生成[0,1)间的 一个随机数
a1 = rng.rand()
print("a1.type{}".format(type(a1)))
print(a1) #生成[0,1)间的 一个包含两个元素的随机数组
a2 = rng.rand(2)
print("a2.type{}".format(type(a2)))
print(a2) #生成[1,2)间的随机浮点数
X1 = rng.uniform(1,2)
print("X1.type{}".format(type(X1)))
print(X1) #生成[1,2)间的随机数,一维数组且仅含1个数
X2 = rng.uniform(1,2,1)
print("X2.type{}".format(type(X2)))
print(X2) #生成[1,2)间的随机数,一维数组且仅含2个数
X3 = rng.uniform(1,2,2)
print("X3.type{}".format(type(X3)))
print(X3) #生成[1,2)间的随机数,2行3列矩阵
X4 = rng.uniform(1,2,(2,3))
print("X4.type{}".format(type(X4)))
print(X4)

基于numpy的随机数构造的更多相关文章

  1. 使用numpy产生随机数

    numpy中的random模块包含了很多方法可以用来产生随机数,这篇文章将对random中的一些常用方法做一个总结. 1.numpy.random.rand(d0, d1, ..., dn) 作用:产 ...

  2. 一种基于 Numpy 的 TF-IDF 实现报告

    一种基于 Numpy 的 TF-IDF 实现报告 摘要 本文使用了一种 state-of-the-art 的矩阵表示方法来计算每个词在每篇文章上的 TF-IDF 权重(特征).本文还将介绍基于 TF- ...

  3. kbmMW安全第#3 - 基于硬件的随机数#2

    在之前的基于硬件的随机数博文中,我介绍了如何使用基于外部硬件的随机数生成器,来生成高质量的随机数. 但是,后来英特尔和AMD的CPU也包含随机值生成器.从2015年6月开始,来自Ivy Bridge的 ...

  4. kbmMW基于硬件生成随机数

    按作者的说法,Delphi提供的生成随机数不是真正随机的,因为他是根据种子计算的,即种子+算法生成的随机数,如果被人知道原始种子值和算法的调用次数,则可以重现随机数,因此在安全领域,这是不安全的.同时 ...

  5. 科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数)

    Mlab了解 Mlab是Mayavi提供的面向脚本的api,他可以实现快速的三维可视化,Mayavi可以通过Mlab的绘图函数对Numpy数组建立可视化. 过程为: .建立数据源 .使用Filter( ...

  6. [开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve)

    [开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve) ​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ...

  7. 基于Numpy的神经网络+手写数字识别

    基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...

  8. 深度学习基础-基于Numpy的卷积神经网络(CNN)实现

    本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN) ...

  9. 深度学习基础-基于Numpy的感知机Perception构建和训练

    1. 感知机模型   感知机Perception是一个线性的分类器,其只适用于线性可分的数据.          f(x) = sign(w.x + b) 其试图在所有线性可分超平面构成的假设空间中找 ...

随机推荐

  1. Android应用内使用新浪微博SDK发送微博(不调用微博客户端)

    需求 手头的一个应用需要添加分享到新浪微博的功能,这个功能在现在的应用上是非常的普遍的了. 分享到新浪微博,其实就是发送一条特定内容的微博,所以需要用到新浪微博SDK了. 微博SDK SDK的下载地址 ...

  2. 【转载】Java NIO学习 & NIO BIO AIO 比较

    可以参考这个页面: http://www.iteye.com/magazines/132-Java-NIO (下面这个页面也有) http://ifeve.com/overview/ 另,在这篇文章里 ...

  3. WAF防御能力评测及工具

    本篇文章介绍如何从常规攻击的防御能力来评测一款WAF.一共覆盖了十六种攻击类型,每种类型均从利用场景(攻击操作的目的),注入点(漏洞产生的地方,比如说大多数WAF都会较全面地覆盖来自GET请求的攻击, ...

  4. global constructor

    HQ在要求我们修改code style后,又让我检查并去掉"global constructor". 第一次听说这玩意,就研究了一下.发现网上有人讨论的很精彩,就记下来. “glo ...

  5. Win7如何删除家庭组

    发表于 2010-07-15 11:38:06 [YY团]Win7家庭组不能正常使用的解决办法 只是把近期碰到的一个小毛病的解决方案共享一下罢了,估计碰到这问题的人不会很多-- 表现是家庭组不能正常访 ...

  6. JavaScript中让元素动态发射指定的事件

    var ev = document.createEvent('HTMLEvents'); //动态创建HTML事件 ev.initEvent('abort', false, true); //HTML ...

  7. dmesg 时间转换脚本

    https://linuxaria.com/article/how-to-make-dmesg-timestamp-human-readable perl脚本 #!/usr/bin/perl use ...

  8. struts action不在是一个单例类

    在servlet中,servlet类是一个单例,在servlet中的成员变量,将会被所有请求共享,同时也有可能存在线程安全问题,如有一个成员变量num,每次方法后市的num自增 package act ...

  9. hibernate 关系映射之 单向外键关联一对一

    这里的关系指的是对象与对象之间的关系 注解方式单向关联一对一: //这个类描述的husband是一个对应一个wife的 import javax.persistence.Entity; import ...

  10. RandomForest&ROC

    # -*- coding: utf-8 -*- # __author__ = 'JieYao' from biocluster.agent import Agent from biocluster.t ...