1968: [Ahoi2005]COMMON 约数研究

Time Limit: 1 Sec  Memory Limit: 64 MB
Submit: 2939  Solved: 2169
[Submit][Status][Discuss]

Description

Input

只有一行一个整数 N(0 < N < 1000000)。

Output

只有一行输出,为整数M,即f(1)到f(N)的累加和。

Sample Input

3

Sample Output

5

题解

我们知道一个数x的约数个数 = (a1 + 1) * (a2 + 1) * (a3 + 1)......(ak + 1)
其中x的质因子分解:x = p1^a1 * p2^a2 * p3^a3 ......pk^ak
现在我们需要算出所有数的约数个数和
直接算?O(n√n)  n <= 1000000肯定超时
考虑线性筛
若i为质数,显然f[i] = 2
若i不为质数,它一定会在线性筛中被它除去最小的一个质因数后的那个数筛去
例如 20 = 2 * 2 * 5,那么在筛到10 = 2 * 5时,我们会用 2 * 10 筛去20
由于比10及10以前的f值已经确定
这个时候f[20] = f[10] + f[10 / 2^1] = (1 + 1) * (1 + 1) + (1 + 1) = 3 * 2
也就是f[i * prime[j]] = f[i] + f[i除去所有prime[j]后的数]
 
UPD2018.1.27:
其实这道题有更快的方法。。。。是我蠢了
∑[N/i]即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
int prime[maxn],primei = 0,n;
LL f[maxn],M = 0;
bitset<maxn> isp;
void cal(){
int t;
isp.set();
f[1] = 1;
for (int i = 2; i <= n; i++){
if (isp[i]) prime[++primei] = i,f[i] = 2;
for (int j = 1; j <= primei && i * prime[j] <= n; j++){
isp[i * prime[j]] = false;
for (t = i; t % prime[j] == 0; t /= prime[j]);
f[i * prime[j]] = f[i] + f[t];
if (i % prime[j] == 0) break;
}
}
REP(i,n) M += f[i];
}
int main()
{
cin >> n;
cal();
cout << M << endl;
return 0;
}
UPD:
#include<iostream>
using namespace std;
int main(){
int n,nxt; cin>>n;
long long int ans = 0;
for (int i = 1; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans += (long long int)n / i * (nxt - i + 1);
}
cout<<ans<<endl;
return 0;
}

  

[Ahoi2005]COMMON 约数研究 【欧拉线性筛的应用】的更多相关文章

  1. BZOJ 1968: [Ahoi2005]COMMON 约数研究

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2032  Solved: 1537[Submit] ...

  2. BZOJ 1968: [Ahoi2005]COMMON 约数研究 水题

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  3. BZOJ 1968: [Ahoi2005]COMMON 约数研究(新生必做的水题)

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2351  Solved: 1797 [Submi ...

  4. bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究

    http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...

  5. [POJ1595]欧拉线性筛(虽然这道题不需要...)

    欧拉线性筛. 对于它的复杂度的计算大概思考了很久. procedure build_prime; var i,j:longint; begin fillchar(vis,sizeof(vis),tru ...

  6. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  7. 1968: [Ahoi2005]COMMON 约数研究

    #include<cstdio> #include<iostream> #define M 1000008 using namespace std; long long tot ...

  8. BZOJ1968: [Ahoi2005]COMMON 约数研究 线性筛

    按照积性函数的定义筛一下这个积性函数即可. #include <cstdio> #include <algorithm> #define N 1000004 #define s ...

  9. BZOJ1968 [Ahoi2005]COMMON 约数研究 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i)   (1<=i<=n)N<=1000000 F( ...

随机推荐

  1. hdu1596find the safest road(floyd)

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. iWebShop安装教程

    要进行iWebShop测试,要先在本地电脑上安装iWebShop运行环境,之后再安装iWebShop程序,接下来我就一步步讲解,如何安装iWebShop程序. ##一.运行环境搭建 这里我推荐新手使用 ...

  3. 韦大仙--简单的monkey测试命令行操作及生成log日志保存

    作中,在将apk交给软件测试人员去测试之前,不免要自己先自测,monkey自测是一个不错的选择! 步骤很简单: 1.测试用的手机与电脑连接好USB ,并且安装好驱动(我一般都是通过豌豆荚自动安装的)! ...

  4. 【hidden】微信小程序hidden属性使用示例

    hidden属性用于隐藏标签,代码示例: <view hidden="{{!statusTag}}">我出来了~</view> <button bin ...

  5. jQuery的图片懒加载

    jQuery的图片懒加载 function imgLazyLoad(options) { var settings = { Id: $('img'), threshold: 100, effectsp ...

  6. ionic 获取input的值

    1.参数传递法 例子:获取input框内容 这里有个独特的地方,直接在input处使用 #定义参数的name值,注意在ts中参数的类型 在html页面中 <ion-input type=&quo ...

  7. openstack架构

    终于正式进入 OpenStack 部分了. 今天开始,CloudMan 将带着大家一步一步揭开 OpenStack 的神秘面纱. OpenStack 已经走过了 6 个年头. 每半年会发布一个版本,版 ...

  8. kvm虚拟化操作

    本节演示如何使用 virt-manager 启动 KVM 虚机. 首先通过命令 virt-manager 启动图形界面 # virt-manager 点上面的图标创建虚机 给虚机命名为 kvm1,这里 ...

  9. Ext JS 6学习文档-第5章-表格组件(grid)

    Ext JS 6学习文档-第5章-表格组件(grid) 使用 Grid 本章将探索 Ext JS 的高级组件 grid .还将使用它帮助读者建立一个功能齐全的公司目录.本章介绍下列几点主题: 基本的 ...

  10. ThinkPHP - 3 - IDE选择以及Eclipse PDT打开ThinkPHP项目

    ThinkPHP框架已部署到SAE(新浪云),且代码已获取到本地.眼前面临的问题就是,对ThinkPHP项目选择哪种开发工具(IDE)? 经过简单的查找比较,以及电脑里已装有Eclipse的因素,遂决 ...