1968: [Ahoi2005]COMMON 约数研究

Time Limit: 1 Sec  Memory Limit: 64 MB
Submit: 2939  Solved: 2169
[Submit][Status][Discuss]

Description

Input

只有一行一个整数 N(0 < N < 1000000)。

Output

只有一行输出,为整数M,即f(1)到f(N)的累加和。

Sample Input

3

Sample Output

5

题解

我们知道一个数x的约数个数 = (a1 + 1) * (a2 + 1) * (a3 + 1)......(ak + 1)
其中x的质因子分解:x = p1^a1 * p2^a2 * p3^a3 ......pk^ak
现在我们需要算出所有数的约数个数和
直接算?O(n√n)  n <= 1000000肯定超时
考虑线性筛
若i为质数,显然f[i] = 2
若i不为质数,它一定会在线性筛中被它除去最小的一个质因数后的那个数筛去
例如 20 = 2 * 2 * 5,那么在筛到10 = 2 * 5时,我们会用 2 * 10 筛去20
由于比10及10以前的f值已经确定
这个时候f[20] = f[10] + f[10 / 2^1] = (1 + 1) * (1 + 1) + (1 + 1) = 3 * 2
也就是f[i * prime[j]] = f[i] + f[i除去所有prime[j]后的数]
 
UPD2018.1.27:
其实这道题有更快的方法。。。。是我蠢了
∑[N/i]即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<bitset>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
int prime[maxn],primei = 0,n;
LL f[maxn],M = 0;
bitset<maxn> isp;
void cal(){
int t;
isp.set();
f[1] = 1;
for (int i = 2; i <= n; i++){
if (isp[i]) prime[++primei] = i,f[i] = 2;
for (int j = 1; j <= primei && i * prime[j] <= n; j++){
isp[i * prime[j]] = false;
for (t = i; t % prime[j] == 0; t /= prime[j]);
f[i * prime[j]] = f[i] + f[t];
if (i % prime[j] == 0) break;
}
}
REP(i,n) M += f[i];
}
int main()
{
cin >> n;
cal();
cout << M << endl;
return 0;
}
UPD:
#include<iostream>
using namespace std;
int main(){
int n,nxt; cin>>n;
long long int ans = 0;
for (int i = 1; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans += (long long int)n / i * (nxt - i + 1);
}
cout<<ans<<endl;
return 0;
}

  

[Ahoi2005]COMMON 约数研究 【欧拉线性筛的应用】的更多相关文章

  1. BZOJ 1968: [Ahoi2005]COMMON 约数研究

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2032  Solved: 1537[Submit] ...

  2. BZOJ 1968: [Ahoi2005]COMMON 约数研究 水题

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeO ...

  3. BZOJ 1968: [Ahoi2005]COMMON 约数研究(新生必做的水题)

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2351  Solved: 1797 [Submi ...

  4. bzoj千题计划170:bzoj1968: [Ahoi2005]COMMON 约数研究

    http://www.lydsy.com/JudgeOnline/problem.php?id=1968 换个角度 一个数可以成为几个数的约数 #include<cstdio> #incl ...

  5. [POJ1595]欧拉线性筛(虽然这道题不需要...)

    欧拉线性筛. 对于它的复杂度的计算大概思考了很久. procedure build_prime; var i,j:longint; begin fillchar(vis,sizeof(vis),tru ...

  6. 欧拉函数O(sqrt(n))与欧拉线性筛素数O(n)总结

    欧拉函数: 对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. POJ 2407.Relatives-欧拉函数 代码O(sqrt(n)): ll euler(ll n){ ll ans=n; ...

  7. 1968: [Ahoi2005]COMMON 约数研究

    #include<cstdio> #include<iostream> #define M 1000008 using namespace std; long long tot ...

  8. BZOJ1968: [Ahoi2005]COMMON 约数研究 线性筛

    按照积性函数的定义筛一下这个积性函数即可. #include <cstdio> #include <algorithm> #define N 1000004 #define s ...

  9. BZOJ1968 [Ahoi2005]COMMON 约数研究 数论

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1968 题意概括 求 ΣF(i)   (1<=i<=n)N<=1000000 F( ...

随机推荐

  1. react-native android 初始化问题

    最近开始接触rn,官方起手,装了一堆工具,然后启动项目的时候出现了一堆问题,这里针对我遇到的一些问题提供一些解决方案. 本人开发环境mac,在启动ios的时候没啥大问题,可以直接启动,这里提示一点,因 ...

  2. APP产品设计流程图

    产品设计流程(toB) 工作有半个月了,遇到了很多问题,也在不断学习和充实自己,让自己的工作变得更加清晰和流程化,所以整理了这么个设计流程. 收集整理一切有用或则以后可能会用的文档. 从文档里面提炼用 ...

  3. python 水仙花

    #简单def narcissus(): for n in range(100, 1000, 1): a, b, c = n//100, (n//10)%10, (n%100)%10 if a ** 3 ...

  4. SQL Sever查询语句集锦

    一. 简单查询简单的Transact-SQL查询只包括选择列表.FROM子句和WHERE子句.它们分别说明所查询列.查询的表或视图.以及搜索条件等. 例如,下面的语句查询testtable表中姓名为“ ...

  5. HDU - 6438(贪心+思维)

    链接:HDU - 6438 题意:给出 n ,表示 n 天.给出 n 个数,a[i] 表示第 i 天,物品的价格是多少.每天可以选择买一个物品,或者卖一个已有物品,也可以什么都不做,问最后最大能赚多少 ...

  6. Linux文件系统简介和软链接和硬链接的区别

    Linux有着极其丰富的文件系统,大体可分为如下几类: 网络文件系统:如nfs.cifs等: 磁盘文件系统:如ext3.ext4等: 特殊文件系统:如prco.sysfs.ramfs.tmpfs等: ...

  7. Windows10安装GPU版本的Tensorflow

    本人电脑配置(公司的)gtx1080ti,下载的的cuda8.0,cudnn6.0,python3.5.3安装完成后,安装tensorflow 1.pip install tensorflow-gpu ...

  8. Halcon10 下载

    Halcon10 下载地址:http://www.211xun.com/download_page_1.html HALCON 10 是一套机器视觉图像处理库,由一千多个算子以及底层的数据管理核心构成 ...

  9. Machine Learning分类:监督/无监督学习

    从宏观方面,机器学习可以从不同角度来分类 是否在人类的干预/监督下训练.(supervised,unsupervised,semisupervised 以及 Reinforcement Learnin ...

  10. c# html 导出excel

    [CustomAuthorize]        public FileResult ExportCustomerManagerVisitExcel(string dateType, string r ...