LeetCode: 29. Divide Two Integers (Medium)
1. 原题链接
https://leetcode.com/problems/divide-two-integers/description/
2. 题目要求
给出被除数dividend和除数divisor,求出二者相除的商,余数忽略不计。
注意:不能使用乘法、除法和取余运算
3. 解题思路
陷阱一:MIN_VALUE/-1会溢出。因为Integer.MIN_VALUE = -的绝对值比Integer.MAX_VALUE大1
陷阱二:除数divisor不能等于“0”
思路一:使用一个while循环,当dividend >= divisor时,进入循环。dividend = divident - divisor,每减一次计数器res+1。循环结束后则得到二者之商。
缺点:时间复杂度为O( n ),当被除数很大、除数很小时,效率非常低
public class DivideTwoIntegers29 {
public static void main(String[] args) {
System.out.println(divided(-36, -3));
}
public static int divide(int dividend, int divisor) {
if (divisor == 0 || dividend == Integer.MIN_VALUE && divisor == -1)
return Integer.MAX_VALUE;
int res = 0;
int sign = (dividend < 0) ^ (divisor < 0) ? -1 : 1; // 异或运算,除数和被除数同号为正,异号为负
long dvd = Math.abs((long) dividend);
long dvs = Math.abs((long) divisor);
while (dvd >= dvs) {
dvd -= dvs;
res++;
}
return sign == 1 ? res : -res;
}
}
思路二:采用位移运算,任何一个整数可以表示成以2的幂为底的一组基的线性组合,即num=a_0*2^0+a_1*2^1+a_2*2^2+...+a_n*2^n。基于以上这个公式以及左移一位相当于乘以2,我们先让除数左移直到大于被除数之前得到一个最大的基。然后接下来我们每次尝试减去这个基,如果可以则结果增加加2^k,然后基继续右移迭代,直到基为0为止。因为这个方法的迭代次数是按2的幂直到超过结果,所以时间复杂度为O(logn)。
public class DivideTwoIntegers29 {
public static void main(String[] args) {
System.out.println(divided(-36, -3));
}
public static int divide(int dividend, int divisor) {
if (divisor == 0 || dividend == Integer.MIN_VALUE && divisor == -1)
return Integer.MAX_VALUE;
int res = 0;
int sign = (dividend < 0) ^ (divisor < 0) ? -1 : 1; // 异或运算,除数和被除数同号为正,异号为负
long dvd = Math.abs((long) dividend);
long dvs = Math.abs((long) divisor);
while (dvs <= dvd) {
long temp = dvs, mul = 1;
while (dvd >= temp << 1) { // temp<<1,二进制表示左移一位,等价于temp乘以2
temp = temp << 1;
mul = mul << 1;
System.out.println("temp = " + temp + " " + "mul = " + mul);
}
dvd -= temp;
System.out.println("dvd" + dvd);
res += mul;
}
return sign == 1 ? res : -res;
}
}
LeetCode: 29. Divide Two Integers (Medium)的更多相关文章
- [LeetCode] 29. Divide Two Integers 两数相除
Given two integers dividend and divisor, divide two integers without using multiplication, division ...
- Java [leetcode 29]Divide Two Integers
题目描述: Divide two integers without using multiplication, division and mod operator. If it is overflow ...
- [leetcode]29. Divide Two Integers两整数相除
Given two integers dividend and divisor, divide two integers without using multiplication, divisio ...
- [LeetCode] 29. Divide Two Integers(不使用乘除取模,求两数相除) ☆☆☆
转载:https://blog.csdn.net/Lynn_Baby/article/details/80624180 Given two integers dividend and divisor, ...
- [leetcode]29. Divide Two Integers 两整数相除
Given two integers dividend and divisor, divide two integers without using multiplication, division ...
- [LeetCode] 29. Divide Two Integers ☆☆
Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...
- [LeetCode]29. Divide Two Integers两数相除
Given two integers dividend and divisor, divide two integers without using multiplication, division ...
- LeetCode 29 Divide Two Integers (不使用乘法,除法,求模计算两个数的除法)
题目链接: https://leetcode.com/problems/divide-two-integers/?tab=Description Problem :不使用乘法,除法,求模计算两个数 ...
- [leetcode] 29. divide two integers
这道题目一直不会做,因为要考虑的corner case 太多. 1. divisor equals 0. 2. dividend equals 0. 3. Is the result negative ...
随机推荐
- codeforces 814 C. An impassioned circulation of affection 【尺取法 or DP】
//yy:因为这题多组数据,DP预处理存储状态比每次尺取快多了,但是我更喜欢这个尺取的思想. 题目链接:codeforces 814 C. An impassioned circulation of ...
- CodeForces 91A Newspaper Headline
题目链接:CodeForces - 91A Newspaper Headline 官方题解: In this problem letters from s1 should be taken gree ...
- hdu 3068 最长回文_Manacher模板
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/neng18/article/details/24269469 pid=3068" rel= ...
- 阅读《C陷阱与缺陷》的知识增量
版权声明:本文为Focustc原创文章.转载请注明作者及出处. https://blog.csdn.net/caozhankui/article/details/35925939 看完<C陷阱与 ...
- HDOJ 1528 Card Game Cheater
版权声明:来自: 码代码的猿猿的AC之路 http://blog.csdn.net/ck_boss https://blog.csdn.net/u012797220/article/details/3 ...
- Windows pycharm Terminal使用Anaconda 的Prompt
从Stack Overflow上找到的方法如下 在Settings->Terminal->Shell path 改成:cmd.exe "/K" "C:\Use ...
- linq 和lamba表达式
一.什么是Linq(what)二.Linq的优点(why)三.Linq查询的步骤(how)四.查询基本操作五.結合實例代碼(具體聯繫用linqtosql來寫的增刪改查)一.什么是Linq(what). ...
- bagging 和boosting的概念和区别
1.先弄清楚模型融合中的投票的概念 分为软投票和硬投票,硬投票就是几个模型预测的哪一类最多,最终模型就预测那一类,在投票相同的情况下,投票结果会按照分类器的排序选择排在第一个的分类器结果.但硬投票有个 ...
- 手机站全局的html+css加载等待效果
本文只提供思路,CSS神马的自己定制吧,JS是可以优化的,比如,输出图片的JS也可以放到showdiv()里面,我没有做优化,只是实现,别笑话我,我比较懒... 基本思路:由于Html的解析是从上到下 ...
- DIAView组态软件笔记
1.为了节省成本,我们往往会在PLC将多个开关量整合到同一个word中,这样关联的变量可以从原有的16个变成现在的一个.这样做带来的麻烦就是需要我们在脚本中自己来解析出数据,通过对2求余(mod 2) ...