内存限制:256 MiB时间限制:500 ms标准输入输出
题目类型:传统评测方式:文本比较
上传者: hzwer

题目描述

给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,询问区间内小于某个值 xx 的元素个数。

输入格式

第一行输入一个数字 nn。

第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开。

接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。

若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。

若 \mathrm{opt} = 1opt=1,表示询问 [l, r][l,r] 中,小于 c^2c2 的数字的个数。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4
1 2 2 3
0 1 3 1
1 1 3 2
1 1 4 1
1 2 3 2

样例输出

3
0
2

数据范围与提示

对于 100\%100% 的数据,1 \leq n \leq 50000, -2^{31} \leq \mathrm{others}1≤n≤50000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。

代码:

//#6278. 数列分块入门 2-区间加法,查询区间内小于某个值x的元素个数
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e4+; int n,m;
ll a[maxn],b[maxn],pos[maxn],tag[maxn]; void rechange(int x)
{
for(int i=(x-)*m+;i<=min(x*m,n);i++){
b[i]=a[i];
}
sort(b+(x-)*m+,b+min(x*m,n)+);
} void update(int l,int r,ll c)
{
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++)
a[i]+=c;
rechange(pos[l]);
}
else{
for(int i=l;i<=pos[l]*m;i++)
a[i]+=c;
rechange(pos[l]);
for(int i=pos[l]+;i<=pos[r]-;i++)
tag[i]+=c;
for(int i=(pos[r]-)*m+;i<=r;i++)
a[i]+=c;
rechange(pos[r]);
}
} int getnum(int l,int r,int c)
{
int num=;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++){
if(a[i]+tag[pos[l]]<c) num++;
}
}
else{
for(int i=l;i<=pos[l]*m;i++){
if(a[i]+tag[pos[l]]<c) num++;
}
for(int i=pos[l]+;i<=pos[r]-;i++){
int cnt=c-tag[i];
num+=lower_bound(b+(i-)*m+,b+i*m+,cnt)-b-(i-)*m-;//少减一wa
}
for(int i=(pos[r]-)*m+;i<=r;i++){
if(a[i]+tag[pos[r]]<c) num++;
}
}
return num;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
}
m=sqrt(n);
for(int i=;i<=n;i++)
pos[i]=(i-)/m+;
for(int i=;i<=m+;i++){
sort(b+(i-)*m+,b+min(i*m,n)+);
}
for(int i=;i<=n;i++){
int op,l,r;
ll c;
scanf("%d%d%d%lld",&op,&l,&r,&c);
if(op==){
update(l,r,c);
}
else{
printf("%d\n",getnum(l,r,c*c));
}
}
return ;
} /*
5
1 3 7 2 5
0 1 3 1
1 1 3 2
1 1 4 1
1 2 3 2
1 3 5 4 1
0
0
3
*/ /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 2
1 1 10 2
1 3 5 3
1 5 10 3
1 6 10 2
1 2 7 2
1 2 7 3 2
0
2
3
5
1
0
5
*/

LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)的更多相关文章

  1. #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)

    题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...

  2. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

  3. LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))

    #6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3   题目描述 给 ...

  4. LOJ-6278-数列分块入门2(分块)

    链接: https://loj.ac/problem/6278 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数. 思路: 分块,用vector维护每个区 ...

  5. LOJ-6279-数列分块入门3(分块, 二分)

    链接: https://loj.ac/problem/6279 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的前驱(比其小的最大元素). 思路: 同样的分块加二 ...

  6. LOJ#6278. 数列分块入门 2

    在一个区间上进行操作,一种操作是某个小区间都加上c,另一个查找这个区间内大于c*c的数 我们可以另外开一个数组在保存a中的每个分块内的相对值,然后每次对a加值,并把a的值赋给b,不同的是b内的各个分块 ...

  7. LOJ.6284.数列分块入门8(分块)

    题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...

  8. LOJ-6277-数列分块入门1(分块)

    链接: https://loj.ac/problem/6277 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,单点查值. 思路: 线段树可以解决,用来学习分块. 分块概念就是,将序列分 ...

  9. 牛客练习赛52 B题【树状数组维护区间和{查询区间和,如果区间元素重复出现则计数一次}】补题ing

    [题目] 查询区间和,如果区间元素重复出现则计数一次. 链接:https://ac.nowcoder.com/acm/contest/1084/B [题解] 将询问按r排序,维护每个数最后出现的位置, ...

随机推荐

  1. Android之极光推送发送自定义消息

    Android端实现主要代码: <span style="font-size:14px;">import java.io.IOException; import jav ...

  2. Weblogic 9.2 启动时报错 javax.xml.namespace.QName

    启动Weblogic 时会报错.javax.xml.namespace.QName; local class incompatible: stream classdesc serialVersionU ...

  3. jquery获取textarea内容为空的问题

    使用 定义了一个textarea,在使用jquery的方法获取文本内容的时候总是为空. var content = $("#content").val(); 后来测试发现,id不能 ...

  4. python内置函数lambda、filter、map、reduce

    lambda匿名函数 1.lambda只是一个表达式,函数体比def简单多. 2.lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去 3.lambda函数 ...

  5. sudo: /usr/libexec/sudo/sudoers.so must be only be writable by owne

    1. chmod 644 sudoers.so 2. pkexec chmod 0440 /etc/sudoers

  6. idea如何搭建springmvc4

    1.推荐大牛博客 此操作我操作了三次过后终于成功了,奉献大牛博客连接:做的非常详细到位,望各位采纳,推荐置顶. https://www.cnblogs.com/chenlinghong/p/83395 ...

  7. 大聊Python-----网络编程

    什么是Socket? socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递. 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器 ...

  8. Android Studio 中引入Library

    启动AndroidStudio后,打开你需要接收Library的项目.比如有两个项目,项目A,和Library项目B,那么打开项目A.图中所示为项目的结构图,点击右上角的File菜单. 2 在下拉菜单 ...

  9. linux安装(Ubuntu)——(二)

    centos的安装参考: http://www.runoob.com/linux/linux-install.html Linux 安装(Ubuntu) 虚拟机:虚拟机(Virtual Machine ...

  10. 利用Python 发送邮件

    概要 我们都知道SMTP(简单邮件传输协议),是一组用于从原地址到目的地址传输邮件的规范,通过它来控制邮件的中转方式.SMTP规定电子邮件应该如何格式化.如何加密,以及如何在邮件服务器之间传递.SMT ...