[BZOJ4007][JLOI2015]战争调度(DP+主定理)
第一眼DP,发现不可做,第二眼就只能$O(2^{1024})$暴搜了。
重新审视一下这个DP,f[x][i]表示在x的祖先已经全部染色之后,x的子树中共有i个参战平民的最大贡献。
设k为总结点数,对于DFS,我们有$T(1)=O(\log k)$,$T(k)=4T(\frac{k}{2})+O(k^2)$。
根据主定理,$O(n^{\log_ba})=O(n^2)$。故时间复杂度为$O(k^2\log k)$,即$O(2^{2n}n)$。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int n,m,mx,c[N],a[][N][N],f[N][N]; void dfs(int x,int d){
if (d==n){
f[x][]=f[x][]=;
for (int j=x>>; j; j>>=) f[x][c[j]]+=a[c[j]][x][j];
return;
}
int ls=x<<,rs=ls|;
rep(i,,<<(n-d)) f[x][i]=;
c[x]=; dfs(ls,d+); dfs(rs,d+);
rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
c[x]=; dfs(ls,d+); dfs(rs,d+);
rep(i,,min(m,<<(n-d))) rep(j,,min(m-i,(<<(n-d))-i))
f[x][i+j]=max(f[x][i+j],f[ls][i]+f[rs][j]);
} int main(){
freopen("bzoj4007.in","r",stdin);
freopen("bzoj4007.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,<<(n-),(<<n)-)
for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
rep(i,<<(n-),(<<n)-)
for (int j=i>>; j; j>>=) scanf("%d",&a[][i][j]);
dfs(,);
rep(i,,m) mx=max(mx,f[][i]);
printf("%d\n",mx);
return ;
}
[BZOJ4007][JLOI2015]战争调度(DP+主定理)的更多相关文章
- 【BZOJ 4007】[JLOI2015]战争调度 DP+搜索+状压
又是一道思路清新的小清晰. 观察题目,如果我们确定了平民或者贵族的任意一方,我们便可以贪心的求出另一方,至此20分:我们发现层数十分小,那么我们就也是状压层数,用lca转移,线性dp,至此50分(好像 ...
- BZOJ4007 [JLOI2015]战争调度
根本想不出来... 原来还是暴力出奇迹啊QAQ 无限ymymym中 /************************************************************** Pr ...
- 【BZOJ4007】[JLOI2015]战争调度(动态规划)
[BZOJ4007][JLOI2015]战争调度(动态规划) 题面 BZOJ 洛谷 题解 神仙题,我是做不来. 一个想法是设\(f[i][j]\)表示当前考虑到\(i\)节点,其子树内有\(j\)个人 ...
- [JLOI2015]战争调度
[JLOI2015]战争调度 题目 解题报告 考试打了个枚举的暴力,骗了20= = $qsy$大佬的$DP$: 其实就是枚举= =,只不过枚举的比较强= = #include<iostream& ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp
题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...
- 【bzoj4007】[JLOI2015]战争调度 暴力+树形dp
Description 脸哥最近来到了一个神奇的王国,王国里的公民每个公民有两个下属或者没有下属,这种 关系刚好组成一个 n 层的完全二叉树.公民 i 的下属是 2 * i 和 2 * i +1.最下 ...
- [JLOI2015]战争调度【暴力+树形Dp】
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/830 ...
- bzoj4007 & loj2111 [JLOI2015]战争调度 复杂度分析+树上背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4007 https://loj.ac/problem/2111 题解 同 [NOI2006]网络 ...
- 【题解】JLOI2015战争调度
搜索+状压+DP. 注意到一个性质:考虑一棵以x为根的子树,在x到原树的根的路径上的点如果都已经确定了方案,那么x的左右儿子的决策就彼此独立,互不影响了.所以我们考虑状压一条路径上每一层节点的状态,求 ...
随机推荐
- Bzoj4870 [SXOI2017]组合数问题
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 155 Solved: 78 Description Input 第一行有四个整数 n, p, k, ...
- 【51NOD-0】1106 质数检测
[算法]数学 #include<cstdio> #include<cmath> bool ok(int x) { int m=(int)sqrt(x+0.5); ;i<= ...
- Web Session 浅入浅出(山东数漫江湖)
使用过几种Web App开发语言和框架,都会接触到Session的概念.即使是一个简单站点访问计数的功能,也常常使用Session来实现的.其他常用的领域还有购物车,登录用户等.但是,对Session ...
- 阿里云服务器部署笔记二(python3、Flask、uWSGI、Nginx)
从git上把项目拉到服务器,项目可以在服务器上运行后,就只需要配置uwsgi和nginx了.它们的逻辑关系是:外部请求->nginx->uwsgi->项目实例. 一.配置uwsgi ...
- HDP-2.6.1安装
1.首先安装HDP的Ambari仓库文件到本机的/etc/yum.repos.d/ambari.repo路径下
- VMWare虚拟机NAT模式静态IP联网配置
1.网络连接 vmnet8右键属性ipv4,设置ip为192.168.10.100.如下图: 2.设置虚拟机的网络适配器采用NAT模式 3.vmware工具栏的编辑->虚拟网络编辑器 ...
- Linux_信号与信号量【转】
转自:http://blog.csdn.net/sty23122555/article/details/51470949 信号: 信号机制是类UNIX系统中的一种重要的进程间通信手段之一.我们经常使用 ...
- 安装openssl-0.9.8报错out range of signed 32bit displacement .
安装openssl-0.9.8报错out range of signed 32bit displacement http://blog.csdn.net/wangtingyao1990/article ...
- Redis 主从部署
Redis 主从部署 http://www.xuchanggang.cn/archives/978.html
- ICTPOS3.0 词性标注集
Ag 形语素 形容词性语素.形容词代码为a,语素代码g前面置以A. a 形容词 取英语形容词adjective的第1个字母. ad 副形词 直接作状语的形容词.形容词代码a和副词代码d并在一起. an ...