Link:

Codeoforces #188 传送门

A:

先全转为正数,后面就全是指数级增长了

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
ll x,y,m,res; int main()
{
cin>>x>>y>>m;
if(max(x,y)<m&&max(x,y)<=)
return puts("-1"),; while(x<m&&y<m)
{
if(x>y) swap(x,y);
ll t=(y-x)/y+;
res+=t;x+=t*y;
}
cout<<res;
return ;
}

Problem A

不断将$(x,y)$改为$(x+y,x)$要分类,在一数为负数时为线性增长

B:

首先要发现最终不为0的点的$x,y$的范围仅不到$[-100,100]$

又由于最终状态和操作顺序无关,因此每次将可能区域内的点暴力更新即可

不过我一开始使用了$bfs$,导致同一个位置可能每次进栈多次从而TLE……

以后$bfs$在同一层时一定要控制每个数的进栈次数!能每个位置暴力就不要$bfs$

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int ZERO=;
int n,t,x,y,a[*ZERO][*ZERO],flag=;
int dx[]={,,,-},dy[]={,-,,}; int main()
{
scanf("%d%d",&n,&t);
a[ZERO][ZERO]=n;
while(flag)
{
flag=;
for(int i=ZERO-;i<=ZERO+;i++)
for(int j=ZERO-;j<=ZERO+;j++)
if(a[i][j]>=)
{
flag=;
for(int k=;k<;k++)
a[i+dx[k]][j+dy[k]]+=a[i][j]/;
a[i][j]%=;
}
}
while(t--)
scanf("%d%d",&x,&y),printf("%d\n",abs(x)<=ZERO&&abs(y)<=ZERO?a[ZERO+x][ZERO+y]:);
return ;
}

Problem B

C:

其实是一道不算难的模拟题?可能当时被吓到了……

只要每个连通块里保证收支平衡就保证有解

接下来可以暴力枚举点对转移,保证是将多出的转入少的中,这样就可以忽略上限这个条件了

但也可以总共$O(n^2)$得做:

由于转移次数上限为$O(2*n^2)$,因此可以仅将每个连通块连成一棵树

将一个当前不够的点作为根先做一个预处理,只要$O(n)$的遍历就能使该点符合条件

过程中注意保证已经符合条件的点不能改变,将当前多出的转移

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=2e5+;
struct edge{int nxt,to;}e[MAXN<<];
struct result{int x,y,val;}res[MAXN<<];
int n,v,m,x,y,a[MAXN],b[MAXN],f[MAXN],head[MAXN],tot,cnt;ll sum[MAXN]; int find(int x)
{return f[x]==x?x:f[x]=find(f[x]);}
void add_edge(int x,int y)
{e[++tot]={head[x],y};head[x]=tot;e[++tot]={head[y],x};head[y]=tot;}
void add_res(int x,int y,int val)
{a[x]-=val,a[y]+=val,res[++cnt]={x,y,val};} void dfs(int x,int anc)
{
sum[x]=a[x]-b[x];
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=anc) dfs(e[i].to,x),sum[x]+=sum[e[i].to];
}
void solve(int x,int anc,int val)
{
for(int i=head[x];i;i=e[i].nxt)
{
if(e[i].to==anc||sum[e[i].to]<=) continue;
int w=sum[e[i].to]<val?sum[e[i].to]:val,tmp=a[e[i].to];
if(tmp>=w)
{
add_res(e[i].to,x,w);
if(a[e[i].to]<b[e[i].to]&&tmp>=b[e[i].to])
solve(e[i].to,x,b[e[i].to]-a[e[i].to]);
}
else
{
add_res(e[i].to,x,tmp);
if(tmp<b[e[i].to]) solve(e[i].to,x,w-tmp);
else solve(e[i].to,x,w-tmp+b[e[i].to]);
add_res(e[i].to,x,w-tmp);
}
val-=w;if(!val) return;
}
} int main()
{
scanf("%d%d%d",&n,&v,&m);
for(int i=;i<=n;i++) f[i]=i;
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++) scanf("%d",&b[i]);
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
int posx=find(x),posy=find(y);
if(posx!=posy) add_edge(x,y),f[posx]=posy;
}
for(int i=;i<=n;i++) sum[find(i)]+=a[i]-b[i];
for(int i=;i<=n;i++) if(sum[i]) return puts("NO"),; for(int i=;i<=n;i++)
if(a[i]<b[i]) dfs(i,),solve(i,,b[i]-a[i]);
printf("%d\n",cnt);
for(int i=;i<=cnt;i++)
printf("%d %d %d\n",res[i].x,res[i].y,res[i].val);
return ;
}

Problem C

D:

很明显的一道博弈论

找到所有极大的集合${X^s}$,对每个集合求$SG$值最后异或即可

其中数量大于2的集合可以$sqrt(n)$得找出,剩下数量为1的$SG=1$,可以统一计算

同时$SG$值仅和集合内数量相关,可以预处理+打表

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int mx=,MAXN=1e5+;
//unordered_map<int,int> mp;
int n,k,pre[],vis[MAXN],rem,res;
int sg[]={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
/*
int solve(int x)
{
int &tmp=mp[x];
if(tmp) return tmp;
int ret=(1<<mx)-1;
for(int i=1;(1<<(i-1))<=x;i++)
if(x&(1<<(i-1)))
ret&=~solve(x&~pre[i]);
return tmp=ret&(-ret);
}
*/
int main()
{
/*
for(int i=1;i<=mx;i++)
for(int j=i;j<=mx;j+=i)
pre[i]|=(1<<(j-1));
mp.max_load_factor(0.30);
mp.reserve(750000);
for(int i=1;i<mx;i++)
sg[i]=__builtin_ctz(solve((1<<i)-1));
*/
scanf("%d",&n);
rem=n;res=;
for(int i=;i*i<=n;i++)
if(!vis[i])
{
k=;
for(ll j=i;j<=n;j*=i,k++)
if(j*j<=n) vis[j]=;
rem-=k;res^=sg[k];
}
res^=(rem&);
puts(res?"Vasya":"Petya");
return ;
}

Problem D

与次方相关的注意将大于1的和1次方分开考虑

注意该题各种位运算技巧和$unordered\_ map$以及$builtin\_ ctz,reserve(),max\_load\_factor$的使用

E:

[Codeforces #188] Tutorial的更多相关文章

  1. [Codeforces #172] Tutorial

    Link: Codeforces #172 传送门 A: 一眼看上去分两类就可以了 1.每个矩形只有两条边相交,重合的形状为菱形 2.每个矩形四条边都有相交 对于情况1答案为$h*h/sin(a)$ ...

  2. [Codeforces #514] Tutorial

    Link: Codeforces #514 传送门 很简单的一场比赛打崩了也是菜得令人无话可说…… D: 一眼二分,发现对于固定的半径和点,能包含该点的圆的圆心一定在一个区间内,求出区间判断即可 此题 ...

  3. [Codeforces #210] Tutorial

    Link: Codeforces #210 传送门 A: 贪心,对每个值都取最大值,不会有其他解使答案变优 #include <bits/stdc++.h> using namespace ...

  4. [Codeforces #196] Tutorial

    Link: Codeforces #196 传送门 A: 枚举 #include <bits/stdc++.h> using namespace std; #define X first ...

  5. [Codeforces #174] Tutorial

    Link: Codeforces #174 传送门 A: 求原根的个数,有一条性质是原根个数为$\phi(\phi(n))$,多了一个不会证的性质 如果要确定哪些是原根的话还是要枚举,不过对于每个数不 ...

  6. [Codeforces #190] Tutorial

    Link: Codeforces #190 传送门 A: 明显答案为$n+m-1$且能构造出来 #include <bits/stdc++.h> using namespace std; ...

  7. [Codeforces #211] Tutorial

    Link: Codeforces #211 传送门 一套非常简单的题目,但很多细节都是错了一次才能发现啊…… 还是不能养成OJ依赖症,交之前先多想想corner case!!! A: 模拟,要特判0啊 ...

  8. [Codeforces #192] Tutorial

    Link: Codeforces #192 传送门 前两天由于食物中毒现在还要每天挂一天的水 只好晚上回来随便找套题做做找找感觉了o(╯□╰)o A: 看到直接大力模拟了 但有一个更简便的方法,复杂度 ...

  9. [Codeforces #201] Tutorial

    Link: 传送门 代码量很少的一套思维题 A: 试一试发现最后状态一定是所有$min,max$间$gcd$的倍数 直接判断数量的奇偶性即可 #include <bits/stdc++.h> ...

随机推荐

  1. 逃生(HDU4857 + 反向拓扑排序)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4857 题面是中文题面,就不解释题意了,自己点击链接去看下啦~这题排序有两个条件,一个是按给定的那个序列 ...

  2. 大聊Python----SocketServer

    什么是SocketServer? SocketServer的最主要的作用是实现并发处理,也就是可以多个用户同时上传和下载文件. socketserver模块简化了编写网络服务器的任务. sockets ...

  3. bzoj 1188 SG函数

    首先我们可以把一个石子看成一个单独的游戏,那么我们可以发现所有位置的石子至于奇偶有关,因为某一个人操作其中的一个石子,我们可以用相同的石子做相同的操作,所以我们只需要保留下所有位置的01,那么对于每个 ...

  4. .Net MVC4 上传大文件,并保存表单

    1. 前台 cshtml </pre><pre name="code" class="csharp">@model BLL.BLL.Pr ...

  5. Angular2.0 基础:双向数据绑定 [(ngModel)]

    在属性绑定中,值从模型到屏幕上的目标属性 (property). 通过把属性名括在方括号中来标记出目标属性,[]. 这是从模型到视图的单向数据绑定. 而在事件绑定中,值是从屏幕上的目标属性 到 mod ...

  6. CentOS7安装MySQL5.7以及修改密码

    CentOS7安装mysql [root@bd005 ~]# wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch. ...

  7. C# 判断一个单链表是否有环及环长和环的入口点

    1.为什么写这个随笔? 前几天参加一个电面,被问到这个问题,想总结一下. 2.为什么标题强调C#? 想在网上看看代码,却没找到C#版的,于是自己用C#实现一下. 一.解决问题的思路 1.一种比较耗空间 ...

  8. php文件读取的问题

    PHP字符编码问题 首先说下字符编码问题,当我们给定路径后如果路径中包含中文,可能会出现问题,打印到屏幕则显示没问题, 但是读取文件会报错:readfile(E:/素玄文件/app历史版本/素玄ERP ...

  9. Qt笔记——QSqlLite

    静态数据库,简单方便 在.pro文件里添加 +sql #ifndef WIDGET_H #define WIDGET_H #include <QWidget> namespace Ui { ...

  10. [你必须知道的.NET]第二十七回:interface到底继承于object吗?

    发布日期:2009.03.05 作者:Anytao © 2009 Anytao.com ,Anytao原创作品,转贴请注明作者和出处. 说在,开篇之前 在.NET世界里,我们常常听到的一句话莫过于“S ...