1060: [ZJOI2007]时态同步

Description

  小Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数
字1,2,3….进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅
存在一条通路(通路指连接两个元件的导线序列)。在电路板上存在一个特殊的元件称为“激发器”。当激发器工
作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将
该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”——接收激励
电流之后不再转发的节点。激励电流在导线上的传播是需要花费时间的,对于每条边e,激励电流通过它需要的时
间为te,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时
得到激励电路——即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目
前小Q有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用
多少次道具才可使得所有的“终止节点”时态同步?

Input

  第一行包含一个正整数N,表示电路板中节点的个数。第二行包含一个整数S,为该电路板的激发器的编号。接
下来N-1行,每行三个整数a , b , t。表示该条导线连接节点a与节点b,且激励电流通过这条导线需要t个单位时

Output

  仅包含一个整数V,为小Q最少使用的道具次数

Sample Input

3
1
1 2 1
1 3 3

Sample Output

2

HINT

N ≤ 500000,te ≤ 1000000

Source

【分析】

  这道题是很水的了,然而我,。。。脑子是个好东西TAT。。。

  其实,不准确的说,如果你不干明显多余的事情,其实方案是唯一的。

  因为你整棵树成立的前提下是每棵子树都成立,很明显吧?

  当你使得没棵子树都成立之后,你当然知道下一步怎么做,改变边权使距离趋于当前最大的一个。

  其实就是直接dfs(我真傻)

  

  则f[x]=f[son]+t[i].c
  答案即 sigma(f[x]-f[son]-t[i].c)
 
  
  今天好傻啊,输入树还输入了n条边。。。
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
using namespace std;
#define Maxn 500010
#define LL long long int mymax(int x,int y) {return x>y?x:y;} struct node
{
int x,y,c,next;
}t[Maxn*];
int len,first[Maxn]; void ins(int x,int y,int c)
{
t[++len].x=x;t[len].y=y;t[len].c=c;
t[len].next=first[x];first[x]=len;
} int f[Maxn];
LL ans=;
void dfs(int x,int fa)
{
f[x]=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
dfs(t[i].y,x);
f[x]=mymax(f[x],f[t[i].y]+t[i].c);
}
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
ans+=f[x]-(f[t[i].y]+t[i].c);
}
} int main()
{
int n,s;
scanf("%d%d",&n,&s);
len=;
memset(first,,sizeof(first));
for(int i=;i<n;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
ins(x,y,c);ins(y,x,c);
}
dfs(s,);
printf("%lld\n",ans);
return ;
}

2017-02-24 22:15:57

【BZOJ 1060】 1060: [ZJOI2007]时态同步 (树形DP)的更多相关文章

  1. BZOJ 1060: [ZJOI2007]时态同步( 树形dp )

    坑爹...数据是错的..详见discuss  http://www.lydsy.com/JudgeOnline/wttl/wttl.php?pid=1060 先求根到叶子的距离最大值x, 然后把所有叶 ...

  2. 【BZOJ1060】[ZJOI2007]时态同步 树形DP

    [BZOJ1060][ZJOI2007]时态同步 Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路 ...

  3. [BZOJ1060][ZJOI2007]时态同步 树形dp

    Description 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数 字1,2,3….进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路 ...

  4. [ZJOI2007]时态同步 (树形DP)

    题目描述 小 Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字 1,2,3-.进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个 ...

  5. BZOJ1060: [ZJOI2007]时态同步(树形dp 贪心)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3285  Solved: 1286[Submit][Status][Discuss] Descript ...

  6. Luogu P1131 [ZJOI2007]时态同步 树形DP

    要自下向上调整,尽可能用一个道具修改多个: 搜的时候记录叶节点的最大深度,减一下就好了. #include<cstdio> #include<iostream> #includ ...

  7. 洛谷 1131 [ZJOI2007]时态同步——树形dp

    题目:https://www.luogu.org/problemnew/show/P1131 因为越高,调节一个影响到的越多,所以底下只要把子树间的差异消除了就行了,与其他部分的差异由更高的边调节. ...

  8. 洛谷 P1131 [ZJOI2007]时态同步 树形DP

    题目描述 分析 我们从根节点开始搜索,搜索到叶子节点,回溯的时候进行维护 先维护节点的所有子节点到该节点最大边权(边权为叶子节点到同时到达它所需要时间) 然后维护答案,答案为最大边权减去所有到子节点的 ...

  9. 【BZOJ-1060】时态同步 树形DP (DFS爆搜)

    1060: [ZJOI2007]时态同步 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2101  Solved: 595[Submit][Statu ...

  10. LG1131 「ZJOI2007」时态同步 树形DP

    问题描述 LG1131 题解 正难则反,把从一个点出发到叶子结点看做从叶子结点走到那个点. DP方程很显然. \(\mathrm{Code}\) #include<bits/stdc++.h&g ...

随机推荐

  1. uoj308 【UNR #2】UOJ拯救计划

    传送门:http://uoj.ac/problem/308 [题解] 考虑枚举用了$i$所学校,那么贡献为${k \choose i} * cnt * i!$ 意思是从$k$所选$i$所出来染色,$c ...

  2. 【Luogu】P3927 SAC E#1 - 一道中档题 Factorial

    [题目]洛谷10月月赛R1 提高组 [题意]求n!在k进制下末尾0的个数,n<=1e18,k<=1e16. [题解]考虑10进制末尾0要考虑2和5,推广到k进制则将k分解质因数. 每个质因 ...

  3. VS开发工具 因插件问题导致 已停止工作 解决办法

    解决方案如下:No1. 开始-->所有程序-->Microsoft Visual Studio 2012-->Visual Studio Tools-->VS2012 开发人员 ...

  4. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6156 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6156 题意:如题. 解法:数位DP,暴力枚举进制之后,就转化成了求L,R区间的回文数的个数,这个直接做 ...

  5. C基础 寻找随机函数的G点

    引言 随机函数算法应该是计算机史上最重要的十大算法之一吧. 而C中使用的随机函数 #include <stdlib.h> _Check_return_ _ACRTIMP int __cde ...

  6. Android端与Android端利用WIFI进行FTP通信

    一.客户端通信工具类: import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; im ...

  7. google fcm 推送的流程

    总结:1.给一个人推,能成功,2.给多个人推,有两种,一种是给组推,一种是给主题推,之前用的是组推,但是不成功,这里换成主题推: <?phpnamespace App\Http\Controll ...

  8. Linux 日志系统及分析

    简介 在Centos 7.x / RHEL 7.x 的版本,系统日志是由一个名为 rsyslog的服务管理的,默认的日志守护进程为 rsyslog , rsyslog 是 syslog 的升级版本,默 ...

  9. ajax登录请求,无法跳转

    没有用form提交数据,用的ajax提交.服务器显示已经登录成功,并且返回了成功代码OK.却无法进行跳转: js代码: $("input[type='submit']").on(& ...

  10. linux命令(28):scp命令

    命令格式:scp [参数] [原路径] [目标路径] 实例1:从远处复制文件到本地目录 scp root@192.168.120.204:/opt/soft/nginx-0.5.38.tar.gz / ...