1  图像直方图

1.1  定义

  统计各个像素值,在整幅图像中出现次数的一个分布函数。

      

1.2  标准化

$\quad p_r(r_k) = \frac{n_k}{MN} \qquad k = 0, 1, 2, ..., L -1 $

  $r_{k}$ - 第 k 个像素灰度值;  $n_{k}$ - 像素灰度值为 rk 的像素数目;

  MN - 图像中总的像素个数;  [0, L-1] - 像素灰度值的范围

1.3  直方图均衡化

1.3.1  定义 

直方图均衡化,是将给定图像的直方图改造成均匀分布的直方图,从而扩大像素灰度值的动态范围,达到增强图像对比度的效果。

$\quad s_k = \frac{(L - 1)}{MN} \sum\limits_{j=0}^k n_j \qquad k = 0, 1, 2, ..., L - 1 $

       

       

1.3.2  实例

一幅灰度值范围是[0, 7],64行64列的数字图像,其灰度分布如下表所示,求直方图均衡化之后的灰度分布。

  r(k)  n(k)  P(rk)
 r(0) = 0  790   0.19
 r(1) = 1  1023  0.25
 r(2) = 2  850  0.21
 r(3) = 3  656  0.16
 r(4) = 4  329  0.08
 r(5) = 5  245  0.06
 r(6) = 6  122  0.03
 r(7) = 7  81  0.02

根据上述公式得, s(0)=1.33≈1,s(1)=3.08≈3,s(2)≈5,s(3)≈6,s(4)≈6,s(5)≈7,s(6)≈7,s(7)≈7

因为 r(k) -> s(k),所以 s(0)=1 对应有790个像素值。因为r(3), r(4) 分别对应 s(3), s(4),且 s(3)=s(4)=6,

故像素值为6的像素数为 (656+329)个,同理可计算像素值为7的像素数。

将不同像素值对应的的像素数除以MN(图像的像素总数),便得到均衡化之后的灰度直方图,如下所示:

2  四个参数

  H1 和 H2 为两个待比较的直方图。1) 和 2) 的值越大,二者越匹配;而 3) 和 4) 的值越小,两者越匹配。

1) Correlation

2) Intersection

3) Chi-square

4) Bhattacharyya distance

3  OpenCV中的函数

3.1  equalizeHist

void equalizeHist (
   InputArray src, // 输入图像
   OutputArray dst // 输出图像
);

源码:

void cv::equalizeHist( InputArray _src, OutputArray _dst )
{
CV_Assert( _src.type() == CV_8UC1 ); if (_src.empty())
return; CV_OCL_RUN(_src.dims() <= && _dst.isUMat(),
ocl_equalizeHist(_src, _dst)) Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat(); Mutex histogramLockInstance; const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;
int hist[hist_sz] = {,};
int lut[hist_sz]; EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance);
EqualizeHistLut_Invoker lutBody(src, dst, lut);
cv::Range heightRange(, src.rows); if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))
parallel_for_(heightRange, calcBody);
else
calcBody(heightRange); int i = ;
while (!hist[i]) ++i; int total = (int)src.total();
if (hist[i] == total)
{
dst.setTo(i);
return;
} float scale = (hist_sz - .f)/(total - hist[i]);
int sum = ; for (lut[i++] = ; i < hist_sz; ++i)
{
sum += hist[i];
lut[i] = saturate_cast<uchar>(sum * scale);
} if(EqualizeHistLut_Invoker::isWorthParallel(src))
parallel_for_(heightRange, lutBody);
else
lutBody(heightRange);
}

3.2  calcHist

void cv::calcHist(
const Mat * images,
int nimages,
const int * channels,
InputArray mask,
OutputArray hist,
int dims,
const int * histSize,
const float ** ranges,
bool uniform = true,
bool accumulate = false )

3.3  compareHist

double cv::compareHist (
InputArray H1,
InputArray H2,
int method
)

4  实例

4.1  直方图计算

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgcodecs/imgcodecs.hpp"
#include "opencv2/imgproc/imgproc.hpp" using namespace cv; int main( int, char** argv )
{
Mat src, dst; // 1) Load image
src = imread("left.png");
if(src.empty()) {
return -;
} // 2) Separate the image in 3 places ( B, G and R )
std::vector<Mat> bgr_planes;
split( src, bgr_planes ); // 3) Establish the number of bins
int histSize = ; // 4) Set the ranges (for B,G,R)
float range[] = { , } ;
const float* histRange = { range }; bool uniform = true;
bool accumulate = false; Mat b_hist, g_hist, r_hist; // 5) Compute the histograms
calcHist( &bgr_planes[], , , Mat(), b_hist, , &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[], , , Mat(), g_hist, , &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[], , , Mat(), r_hist, , &histSize, &histRange, uniform, accumulate ); // 6) Draw the histograms for B, G and R
int hist_w = ;
int hist_h = ;
int bin_w = cvRound( (double) hist_w/histSize ); Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( ,,) ); // 7) Normalize the result to [ 0, histImage.rows ]
normalize(b_hist, b_hist, , histImage.rows, NORM_MINMAX, -, Mat() );
normalize(g_hist, g_hist, , histImage.rows, NORM_MINMAX, -, Mat() );
normalize(r_hist, r_hist, , histImage.rows, NORM_MINMAX, -, Mat() ); // 8) Draw for each channel
for( int i = ; i < histSize; i++ )
{
line( histImage, Point( bin_w*(i-), hist_h - cvRound(b_hist.at<float>(i-)) ) ,
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( , , ), , , );
line( histImage, Point( bin_w*(i-), hist_h - cvRound(g_hist.at<float>(i-)) ) ,
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( , , ), , , );
line( histImage, Point( bin_w*(i-), hist_h - cvRound(r_hist.at<float>(i-)) ) ,
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( , , ), , , );
} // 9) Display
imshow("calcHist Demo", histImage ); waitKey();
}

4.2  直方图均衡化

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h> using namespace cv;
using namespace std; int main( int, char** argv )
{
Mat src, dst; const char* source_window = "Source image";
const char* equalized_window = "Equalized Image"; // Load image
src = imread( argv[], ); if( src.empty() )
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;
return -;
} // Convert to grayscale
cvtColor( src, src, COLOR_BGR2GRAY ); // Apply Histogram Equalization
equalizeHist( src, dst ); // Display results
namedWindow( source_window, WINDOW_AUTOSIZE );
namedWindow( equalized_window, WINDOW_AUTOSIZE ); imshow( source_window, src );
imshow( equalized_window, dst ); // Wait until user exits the program
waitKey(); return ; }

4.3  直方图比较

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h> using namespace std;
using namespace cv; /**
* @function main
*/
int main( int argc, char** argv )
{
Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down; /// Load three images with different environment settings
if( argc < )
{
printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
return -;
} src_base = imread( argv[], );
src_test1 = imread( argv[], );
src_test2 = imread( argv[], ); /// Convert to HSV
cvtColor( src_base, hsv_base, COLOR_BGR2HSV );
cvtColor( src_test1, hsv_test1, COLOR_BGR2HSV );
cvtColor( src_test2, hsv_test2, COLOR_BGR2HSV ); hsv_half_down = hsv_base( Range( hsv_base.rows/, hsv_base.rows - ), Range( , hsv_base.cols - ) ); /// Using 50 bins for hue and 60 for saturation
int h_bins = ; int s_bins = ;
int histSize[] = { h_bins, s_bins }; // hue varies from 0 to 179, saturation from 0 to 255
float h_ranges[] = { , };
float s_ranges[] = { , }; const float* ranges[] = { h_ranges, s_ranges }; // Use the o-th and 1-st channels
int channels[] = { , }; /// Histograms
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2; /// Calculate the histograms for the HSV images
calcHist( &hsv_base, , channels, Mat(), hist_base, , histSize, ranges, true, false );
normalize( hist_base, hist_base, , , NORM_MINMAX, -, Mat() ); calcHist( &hsv_half_down, , channels, Mat(), hist_half_down, , histSize, ranges, true, false );
normalize( hist_half_down, hist_half_down, , , NORM_MINMAX, -, Mat() ); calcHist( &hsv_test1, , channels, Mat(), hist_test1, , histSize, ranges, true, false );
normalize( hist_test1, hist_test1, , , NORM_MINMAX, -, Mat() ); calcHist( &hsv_test2, , channels, Mat(), hist_test2, , histSize, ranges, true, false );
normalize( hist_test2, hist_test2, , , NORM_MINMAX, -, Mat() ); /// Apply the histogram comparison methods
for( int i = ; i < ; i++ )
{
int compare_method = i;
double base_base = compareHist( hist_base, hist_base, compare_method );
double base_half = compareHist( hist_base, hist_half_down, compare_method );
double base_test1 = compareHist( hist_base, hist_test1, compare_method );
double base_test2 = compareHist( hist_base, hist_test2, compare_method ); printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
} printf( "Done \n" ); return ;
}

参考资料

<Digital Image Processing> 3rd

OpenCV Tutorials / Image Processing (imgproc module) / Histogram Calculation

OpenCV 之 直方图处理的更多相关文章

  1. 【计算机视觉】OpenCV中直方图处理函数简述

    计算直方图calcHist 直方图是对数据集合的统计 ,并将统计结果分布于一系列提前定义的bins中.这里的数据不只指的是灰度值 ,统计数据可能是不论什么能有效描写叙述图像的特征. 如果有一个矩阵包括 ...

  2. opencv——图像直方图与反向投影

    引言 在图像处理中,对于直方图这个概念,肯定不会陌生.但是其原理真的可以信手拈来吗? 本文篇幅有点长,在此列个目录,大家可以跳着看: 分析图像直方图的概念,以及opencv函数calcHist()对于 ...

  3. opencv 比较直方图方式 进行人脸检测对比

    完整opencv(emgucv)人脸.检测.采集.识别.匹配.对比 //成对几何直方图匹配               public static string MatchHist()         ...

  4. 【OpenCV】直方图

    今天写直方图,学了几个相关函数 1. mixChannels void mixChannels(const Mat* src, int nsrc, Mat* dst, int ndst, const ...

  5. Opencv——灰度直方图

    灰度直方图是灰度级的函数,它表示图像中具有某种灰度级的像素的个数,反映了图像中某种灰度出现的频率. 如果将图像总像素亮度(灰度级别)看成是一个随机变量,则其分布情况就反映了图像的统计特性,这可用pro ...

  6. OpenCV处理直方图

    直方图可以用来描述各种不同的事物,如物体的色彩分布.物体边缘梯度模板,以及表示目标位置的当前假设. 简单的说,直方图就是对数据进行统计,将统计值组织到一系列事先定义好的bin中.bin中的数值是从数据 ...

  7. 【Opencv】直方图函数 calchist()

    calchist函数需要包含头文件 #include <opencv2/imgproc/imgproc.hpp> 函数声明(三个重载 calchist函数): //! computes t ...

  8. opencv图像直方图均衡化及其原理

    直方图均衡化是什么有什么用 先说什么是直方图均衡化,通俗的说,以灰度图为例,原图的某一个像素为x,经过某个函数变为y.形成新的图.新的图的灰度值的分布是均匀的,这个过程就叫直方图均衡化. 图像直方图均 ...

  9. opencv 7 直方图与匹配

    图像直方图概述 直方图的计算与绘制 计算直方图:calcHist()函数 找寻最值:minMaxLoc()函数 示例程序:绘制H-S直方图 #include "opencv2/highgui ...

随机推荐

  1. Genymotion的2个问题及解决方法

    问题一:Unable to connect to your virtual device 解决方法:基本都是内存不够导致的,在virtualbox中调整对应虚拟机的内存,确保任务管理器中的性能一项中剩 ...

  2. bzoj 4327 AC自动机

    思路:将能跑到的状态标记一下,在bfs搜一下就好啦. #include<bits/stdc++.h> #define LL long long #define ll long long # ...

  3. STL模板整理 全排列

    概念: 从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列.如果这组数有n个,那么全排列数为n!个. 比如a, ...

  4. 笔试之random7生成random10

    /*头条 已知有个Random7()的函数,返回1到7随机自然数,让利用这个Random7()构造Random10()随机1~10. random7构造1~49,限制到1~40,对10求余再+1 */ ...

  5. Bzoj 2286 & Luogu P2495 消耗战(LCA+虚树+欧拉序)

    题面 洛谷 Bzoj 题解 很容易想到$O(nk)$的树形$dp$吧,设$f[i]$表示处理完这$i$颗子树的最小花费,同时再设一个$mi[i]$表示$i$到根节点$1$路径上的距离最小值.于是有: ...

  6. 洛谷——P1416 攻击火星

    P1416 攻击火星 题目描述 一群外星人将要攻击火星. 火星的地图是一个n个点的无向图.这伙外星人将按照如下方法入侵,先攻击度为0的点(相当于从图中删除掉它),然后是度为1的点,依此类推直到度为n- ...

  7. 从Windows复制文件到Linux显示乱码问题

    (1).文件名乱码 这并不是所有人都会碰到的问题,一般常见于使用putty的用户.使用convmv命令可以解决这个问题. 我写详细一点还原真实场景,首先我来上传一个测试文件“a此文件在windows下 ...

  8. UTF-8字符「EF BF BD」-备胎

    在众多的utf-8码点值中,除了ascii,你还应该记住「EF BF BD」,因为它是很多编程语言以及库中的备胎,即无效的码点值在编码的时候会默认用这个码点值进行替换,即utf-8中的超级「备胎」(R ...

  9. Line Reflection -- LeetCode

    Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given ...

  10. 重拾vue1

    vue 一.认识Vue 定义:一个构建数据驱动的 web 界面的渐进式框架 优点: 1.可以完全通过客户端浏览器渲染页面,服务器端只提供数据 2.方便构建单页面应用程序(SPA) 二.引入Vue &l ...