原题链接在这里:https://leetcode.com/problems/max-stack/description/

题目:

Design a max stack that supports push, pop, top, peekMax and popMax.

  1. push(x) -- Push element x onto stack.
  2. pop() -- Remove the element on top of the stack and return it.
  3. top() -- Get the element on the top.
  4. peekMax() -- Retrieve the maximum element in the stack.
  5. popMax() -- Retrieve the maximum element in the stack, and remove it. If you find more than one maximum elements, only remove the top-most one.

Example 1:

MaxStack stack = new MaxStack();
stack.push(5);
stack.push(1);
stack.push(5);
stack.top(); -> 5
stack.popMax(); -> 5
stack.top(); -> 1
stack.peekMax(); -> 5
stack.pop(); -> 1
stack.top(); -> 5

Note:

  1. -1e7 <= x <= 1e7
  2. Number of operations won't exceed 10000.
  3. The last four operations won't be called when stack is empty.

题解:

两个stack来解决. 不同的是popMax, 用temp stack 来保存找到最大值之前的, pop出max后再加回去, 同时更新maxStk.

Note: when popMax, get temp back, it needs to update maxStk as well.

Time Complexity: push, O(1). pop, O(1). top, O(1). peekMax, O(1). popMax, O(n). n是stack中数字的个数.

Space: O(n).

AC Java:

 class MaxStack {
Stack<Integer> stk;
Stack<Integer> maxStk; /** initialize your data structure here. */
public MaxStack() {
stk = new Stack<Integer>();
maxStk = new Stack<Integer>();
} public void push(int x) {
stk.push(x);
if(maxStk.isEmpty() || maxStk.peek()<=x){
maxStk.push(x);
}
} public int pop() {
int x = stk.pop();
if(!maxStk.isEmpty() && x==maxStk.peek()){
maxStk.pop();
} return x;
} public int top() {
return stk.peek();
} public int peekMax() {
return maxStk.peek();
} public int popMax() {
Stack<Integer> tempStk = new Stack<Integer>();
int x = maxStk.pop();
while(!stk.isEmpty() && stk.peek()<x){
tempStk.push(stk.pop());
} stk.pop();
while(!tempStk.isEmpty()){
int top = tempStk.pop();
push(top);
}
return x;
}
} /**
* Your MaxStack object will be instantiated and called as such:
* MaxStack obj = new MaxStack();
* obj.push(x);
* int param_2 = obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.peekMax();
* int param_5 = obj.popMax();
*/

类似Min Stack.

LeetCode Max Stack的更多相关文章

  1. [LeetCode] Max Stack 最大栈

    Design a max stack that supports push, pop, top, peekMax and popMax. push(x) -- Push element x onto ...

  2. [leetcode]716. Max Stack 最大栈

    Design a max stack that supports push, pop, top, peekMax and popMax. push(x) -- Push element x onto ...

  3. 【LeetCode】716. Max Stack 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 双栈 日期 题目地址:https://leetcode ...

  4. [LeetCode] Min Stack 最小栈

    Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. pu ...

  5. LeetCode——Max Consecutive Ones

    LeetCode--Max Consecutive Ones Question Given a binary array, find the maximum number of consecutive ...

  6. 716. Max Stack (follow up questions for min stack)

    Design a max stack that supports push, pop, top, peekMax and popMax. push(x) -- Push element x onto ...

  7. 716. Max Stack实现一个最大stack

    [抄题]: Design a max stack that supports push, pop, top, peekMax and popMax. push(x) -- Push element x ...

  8. [LeetCode] Max Chunks To Make Sorted II 可排序的最大块数之二

    This question is the same as "Max Chunks to Make Sorted" except the integers of the given ...

  9. LeetCode Monotone Stack Summary 单调栈小结

    话说博主在写Max Chunks To Make Sorted II这篇帖子的解法四时,写到使用单调栈Monotone Stack的解法时,突然脑中触电一般,想起了之前曾经在此贴LeetCode Al ...

随机推荐

  1. Java应对Flash XSS攻击

    问题引出: 今天公司派出安全任务,说是要解决一个Flash XSS攻击,一看顿时傻眼,都没听说过.而且flash已经淘汰了,根本没研究过flash,搜了资料才开始慢慢开始工作. 要求: 1.过滤URL ...

  2. knudson hypothesis 二次突变假说

    二次突变假说是由诺丁在1953年提出的,他发现似乎随着年龄的增长,患有癌症的概率有上升.对这种现象有一种解释,即癌症的发生需要多个突变的累积. 克努森在1971通过研究正式地提出该观点.他对具有遗传性 ...

  3. Linux常用命令--文件(夹)查找之find命令

    Linux系统用得越久,就会发现这真的是一个很优秀的系统,各种方便各种实用各种高效率. 晚饭前写一下find命令的笔记. 其实这篇笔记,也是看到一篇外文博客,写得不错,自己拿来练一练,然后才顺便写篇笔 ...

  4. SpringBoot 通用返回类设计

    在项目中通常需要为前端设计通过的返回类,返回的格式为: { "status": "success", "data": {...} } 定义通 ...

  5. iOS基于XMPP实现即时通讯之一、环境的搭建

    移动端访问不佳,请访问我的个人博客 使用XMPP已经有一段时间了,但是一直都没深入研究过,只是使用SDK做一些简单的操作,看了许多大神的博客,自己总结一下,准备写一系列关于XMPP的使用博客,以便于自 ...

  6. Luogu-5004 专心OI-跳房子(矩阵快速幂)

    Luogu-5004 专心OI-跳房子(矩阵快速幂) 题目链接 题解: 先考虑最朴素的dp 设\(f[i][0/1]\)表示第\(i\)个位置跳/不跳的方案数,则: \[ \begin{cases} ...

  7. sql server 2014 在windows server 2012 上安装Analysis Services

    Analysis Services Account Name : NT AUTHORITY\SYSTEM

  8. thinkPHP中怎么使用阿里云的sdk

    使用阿里云官方给的方法总会报错 Class 'Home\Controller\DefaultProfile' not found 这样是因为namespace的原因,将aliyun sdk 放在con ...

  9. Java编程时部分快捷键

    alt + / 内容助理 配置:Window->properties->keys->查看alt + /的配置,然后解除当前的配置->搜索content assist->解 ...

  10. DevExpress 给TreeList添加右键菜单

    只有在右击节点时才会触发 private void treeList1_MouseDown(object sender, MouseEventArgs e) { if (e.Button == Mou ...