Description

  有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红
色线条的总长度即为所求. 

Input

  第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.

Output

  最后的周长,保留三位小数

对每个圆,若没被后面的圆完全覆盖,就统计后面的圆覆盖的圆周长度,具体实现可以求出圆周上每个被覆盖区间并取并
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double ld;
int n;
const ld pi=acos(-.l),_2pi=pi*;
struct itv{ld l,r;};
bool operator<(itv x,itv y){return x.l<y.l;}
int ip=;
ld ans=;
void maxs(ld&a,ld b){if(a<b)a=b;}
itv is[];
struct cir{
ld x,y,r;
void init(){
scanf("%lf%lf%lf",&r,&x,&y);
}
bool in(cir w){
ld a=x-w.x,b=y-w.y;
return sqrt(a*a+b*b)+r-1e-<w.r;
}
bool cross(cir w){
ld a=x-w.x,b=y-w.y;
ld c=sqrt(a*a+b*b);
return c<r+w.r-1e-&&c>fabs(r-w.r)+1e-;
}
ld fix(ld x){
while(x<)x+=_2pi;
while(x>_2pi)x-=_2pi;
return x;
}
void cal(cir w){
ld xd=w.x-x,yd=w.y-y,d=sqrt(xd*xd+yd*yd);
ld a=atan2(yd,xd);
ld b=acos((r*r+d*d-w.r*w.r)/(*r*d));
ld l=fix(a-b),r=fix(a+b);
if(l<r)is[ip++]=(itv){l,r};
else is[ip++]=(itv){,r},is[ip++]=(itv){l,_2pi};
}
void get(){
std::sort(is,is+ip);
ld L,R,s=_2pi;
for(int i=,j=;i<ip;i=j){
L=is[i].l;R=is[i].r;
while(j<ip&&is[j].l<=R)maxs(R,is[j++].r);
s-=R-L;
}
ans+=s*r;
}
}cs[];
int main(){
scanf("%d",&n);
for(int i=;i<n;++i)cs[i].init();
for(int i=;i<n;++i){
ip=;
for(int j=i+;j<n;++j)if(cs[i].in(cs[j]))goto out;
for(int j=i+;j<n;++j)if(cs[i].cross(cs[j]))cs[i].cal(cs[j]);
cs[i].get();
out:;
}
printf("%.3f",ans);
return ;
}

bzoj1043 下落的圆盘的更多相关文章

  1. 【bzoj1043】下落的圆盘

    [bzoj1043]下落的圆盘 题意 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. \(1\leq n\leq 1000\ ...

  2. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

  3. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  4. 【BZOJ1043】下落的圆盘 [计算几何]

    下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...

  5. luogu P2510 [HAOI2008]下落的圆盘

    LINK:下落的圆盘 计算几何.n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度. 在做这道题之前有几个前置知识. 极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系 ...

  6. 【计算几何】bzoj1043 [HAOI2008]下落的圆盘

    n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...

  7. bzoj1043 [HAOI2008]下落的圆盘

    Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. Input 第一行为1个整数n,N<=1000 ...

  8. BZOJ1043:[HAOI2008]下落的圆盘——题解(配图片)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1043 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周 ...

  9. 【bzoj1043】[HAOI2008]下落的圆盘 计算几何

    题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...

随机推荐

  1. Core Java Volume I — 4.10. Class Design Hints

    4.10. Class Design HintsWithout trying to be comprehensive or tedious, we want to end this chapter w ...

  2. java NIO-我们到底能走多远系列(39)

    献给各位: Satisfied MindRed Hayes and Jack RhodesHow many times have you heard someone say,"If I ha ...

  3. 简单插入排序(C++版)

    #include <iostream> using namespace std; /** \ Insert Sort * * Key: * * reserve: tm = a[i] * * ...

  4. Educational Codeforces Round 15 B

    B. Powers of Two time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  5. 《C标准库》—之<assert.h>实现

    首先,贴出标准库中<assert.h>的实现源码: #undef assert #ifdef NDEBUG #define assert(test)((void)0) #else void ...

  6. 准备开始自己搞企业管理软件,从openerp入手

    公司运行了半年多,人还比较少,只用了一些即时通讯工具,还有svn等基本的工具 记账用的是gnucash 其他的管理急需相应的软件,找了很长时间也没有合适的 想了想,还是从开源的openerp odoo ...

  7. leetcode 152. Maximum Product Subarray --------- java

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  8. leetcode 149. Max Points on a Line --------- java

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. CDH hadoop的安装

    1 先拷贝tar包到目录底下(tar 包解压 tar zxvf) 2 : 1.使用课程提供的hadoop-2.5.0-cdh5.3.6.tar.gz,上传到虚拟机的/usr/local目录下.(htt ...

  10. FZU-2216 The Longest Straight (二分枚举)

    题目大意:给n个0~m之间的数,如果是0,那么0可以变为任意的一个1~m之间的一个数.从中选出若干个数,使构成一个连续的序列.问能构成的最长序列的长度为多少? 题目分析:枚举连续序列的起点,二分枚举二 ...