依旧看人代码写,不过我觉得自己慢慢写一个也可以写成?

原题:

阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

N<=10^9,M<=20,K<=1000

一开始完全是懵逼的,后来找到两个解释结合一下就理解了

用a(i,j)表示原串走到i,不吉利的串走到j的方案数

设一个数组b(i,j),表示从(i,j)转移到(i+1,k)的方案数,这个可以用kmp处理,先kmp出next,然后枚举i和j,根据kmp求出k并将b(i+1,k)++

然后这个b表示的就是a中的元素下一步会贡献到哪里

这个东西比较玄,只能勉强意会……

NOIP吧里有一种解释,虽然写法似乎和我的不太一样,引导思路效果不错:

“构造转移矩阵A和列向量B,B=(f[0][0],f[0][1],...,f[0][m]),A可以由DP得到,那么A*B的结果就是(f[1][0],f[1][1],...,f[1][m]),所以A^n*B的结果就是(f[n][0],f[n][1],...,f[n][m])”

然后矩阵快速乘即可

小技巧:使用a&1判断奇偶

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,m,mo,s[];
int next[];
int b[][],a[][],c[][];
int ans=;
void kmp(){
int temp=; next[]=;
for(int i=;i<=m;i++){
while(temp && s[temp+]!=s[i]) temp=next[temp];
if(s[temp+]==s[i]) temp++;
next[i]=temp;
}
}
void get_b(){
int temp;
for(int i=;i<m;i++){//注意j枚举的是下一位,因为这里j是对下一位的转移,所以矩阵乘法从0开始写,比较方便
a[i][i]=;
for(int j=;j<=;j++){
temp=i;
while(temp && s[temp+]!=j) temp=next[temp];
if(j==s[temp+]) b[i][temp+]+=;
else b[i][]+=;
}
}
}
void fast_mi(){
while(n){
if(n&){//快速判断奇偶
for(int i=;i<m;i++)
for(int j=;j<m;j++){
c[i][j]=;//反正也要枚举,就不用memset了
for(int k=;k<m;k++)
c[i][j]=(c[i][j]+b[i][k]*a[k][j])%mo;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
a[i][j]=c[i][j];
}
n>>=;
for(int i=;i<m;i++)
for(int j=;j<m;j++){
c[i][j]=;
for(int k=;k<m;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j])%mo;
}
for(int i=;i<m;i++)
for(int j=;j<m;j++)
b[i][j]=c[i][j];
/*for(int i=0;i<m;i++){
for(int j=0;j<m;j++)
cout<<a[i][j]<<" ";
cout<<endl;
}*/
}
}
int main(){//freopen("ddd.in","r",stdin);
memset(b,,sizeof(b));
cin>>n>>m>>mo;
for(int i=;i<=m;i++){
scanf("%c",&s[i]); while(s[i]<''||s[i]>'') scanf("%c",&s[i]);
s[i]-='';
}
kmp(); get_b();
fast_mi();
for(int i=;i<m;i++) ans=(ans+a[][i])%mo;
cout<<ans<<endl;
return ;
}

【BZOJ1009】【HNOI2008】GT考试的更多相关文章

  1. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  2. BZOJ1009 [HNOI2008]GT考试 矩阵

    去博客园看该题解 题目 [bzoj1009][HNOI2008]GT考试 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2….Xn(0<=Xi<=9),他不希望准 ...

  3. bzoj1009 [HNOI2008] GT考试 矩阵乘法+dp+kmp

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4542  Solved: 2815[Submit][Statu ...

  4. [Bzoj1009][HNOI2008]GT考试(KMP)(矩乘优化DP)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4309  Solved: 2640[Submit][Statu ...

  5. bzoj1009: [HNOI2008]GT考试(kmp+矩阵乘法)

    1009: [HNOI2008]GT考试 题目:传送门 题解: 看这第一眼是不是瞬间想起组合数学??? 没错...这样想你就GG了! 其实这是一道稍有隐藏的矩阵乘法,好题! 首先我们可以简化一下题意: ...

  6. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

  7. [bzoj1009][HNOI2008]GT考试

    Description 阿申准备报名参加考试,准考证号为位数,他不希望准考证号上出现不吉利的数字. 他的不吉利数学有位,不出现是指中没有恰好一段等于. 可以为. Input 第一行输入.接下来一行输入 ...

  8. [BZOJ1009] [HNOI2008] GT考试 (KMP & dp & 矩阵乘法)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

  9. bzoj1009: [HNOI2008]GT考试 ac自动机+矩阵快速幂

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9 ...

  10. BZOJ1009:[HNOI2008]GT考试(AC自动机,矩乘DP)

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2...Am(0< ...

随机推荐

  1. Android 自动朗读(TTS)

    在Android应用中,有时候需要朗读一些文本内容,今天介绍一下Android系统自带的朗读TextToSpeech(TTS).自动朗读支持可以对指定文本内容进行朗读,还可以把文本对应的音频录制成音频 ...

  2. Codeforces Round #247 (Div. 2)

    A.水题. 遍历字符串对所给的对应数字求和即可. B.简单题. 对5个编号全排列,然后计算每种情况的高兴度,取最大值. C.dp. 设dp[n][is]表示对于k-trees边和等于n时,如果is== ...

  3. win7下利用笔记本无线网卡创建AP 组建无线局域网(可以连魔兽,TCP、UDP也没问题)

    转自:http://blog.163.com/fghok_018/blog/static/122599670201072773924530/ 近一个月,宿舍的好多同学都买了笔记本电脑,当然,我也买了, ...

  4. UID 修改 & UID 锁死修复

    首先是UID修改的问题,只要卡是UID卡,就都可以修改UID,首先读卡器连接电脑,卡片放到读卡器上. 然后我们要用一个工具,UID207.打开UID207.exe,点Initialize,初始化. 然 ...

  5. 极客DIY:使用Arduino制作一块开源手表

    1 – 引言 首先让我们看下这个项目要考虑到的问题: .)使用100%Arduino兼容性硬件 .)保证存储器足够大可以装下大量的稍后会扩展的新内容 .)电量最少够1天用 .)BLE既是中枢设备又是外 ...

  6. 算法----Magic Index

    给定一个数组 A,如果 某个下标 i, 满足 A[i] = i, 则 i 称为 Magic Index. 现在假设 A 中的元素是递增有序的.且不重复,找出 Magic Index. 更进一步,当数组 ...

  7. css if hack之兼容ie

    1.Css if hack条件语法< !--[if IE]> Only IE <![endif]-->仅所有的WIN系统自带IE可识别< !--[if IE 5.0]&g ...

  8. HDU5090--Game with Pearls 二分图匹配 (匈牙利算法)

    题意:给N个容器,每个容器里有一定数目的珍珠,现在Jerry开始在管子上面再放一些珍珠,放上的珍珠数必须是K的倍数,可以不放.最后将容器排序,如果可以做到第i个容器上面有i个珍珠,则Jerry胜出,反 ...

  9. # 20145210 《Java程序设计》第02周学习总结

    教材学习内容总结 本周我对教材第三章进行了学习,第三章对Java语言的语句.语法.类型.变量的定义等内容进行了比较详细的说明,相比之前的第一章和第二章,我觉得这一章还是比较好理解的,比较容易被接受.J ...

  10. Android WindowManager悬浮窗:不需要申请权限实现悬浮

     Android WindowManager悬浮窗:不需要申请权限实现悬浮 附录文章1介绍了Android平台上的悬浮窗WindowManager,WindowManager悬浮窗可以悬浮在And ...