今天给大家介绍一下one class classification以及用SVDD(support vector domain description)做one class classification。最近接触了一下one class classification,挺有意思的,和多类classification的思路还是有很大差别,比较长姿势~

我们知道,classification问题一般都是2类及2类以上的,典型的2类问题比如识别一封邮件是不是垃圾邮件,这里就只有2类,“是”或者“不是”,典型的多类classification问题比如说人脸识别,每个人对应的脸就是一个类,然后把待识别的脸分到对应的类去。

那么one class classification是什么呢?它只有一个类,然后识别的结果就是:“是”或者“不是”这个类。咦?听起来和2类classification问题貌似几乎一样,它们有什么区别呢?区别在于,在2类classification问题中,training set中有2个类,通常称为正例和负例,例如对于垃圾邮件识别问题,正例就是垃圾邮件,负例就是正常邮件,而在one class classification中,就只有一个类。听着好像有点神奇,什么情况下会出现training set中只有一个类的情况?一般是在的确手头上只有一类样本数据的情况下,或者是别的类数据不好确定的情况下,什么叫不好确定呢?举个例子,比如现在有一堆某产品的历史销售数据,记录着买该产品的用户的各种信息(这些信息在特征提取时会用到),然后还有些没买过该产品的用户的数据,想通过2类classification预测他们是否会买该产品,也就是弄2个类,一类是“买”,另一类是“不买”。这时候问题就来了,如果把买了该产品的用户看成正例,没买该产品的用户看成负例,就会出现(1)已经买了的用户,可以明确知道他已经买了,而没买的用户,却不知道他是的确对该产品不感兴趣,还是说想买但由于种种原因暂时没买成。(2)一般来说,没买的用户数会远远大于已经买了的用户数,这会造成training set中正负样本不均衡,使train出来的model有bias。这个时候,就可以使用one class classification的方法来解决,即training set中只有已经买过该产品的用户数据,在识别一个新用户是否会买该产品时,识别结果就是“会”或者“不会”。

one class classification这如何实现呢?多类classification我们都很熟悉了,方法也很多,比如像SVM去寻找一个最优超平面把正负样本分开,总之都涉及到不止一个类的样本,相当于告诉算法这种东西长什么样(这里的长什么样指的是特征提取方法所提取到的提取),那种东西长什么样,于是训练出一个模型能够区分这些东西。

问题是在one class classification只有一个类,这该怎么办呢?给大家介绍一个方法:SVDD(support vector domain description),它的基本思想是,既然只有一个class,那么我就训练出一个最小的超球面(超球面是指3维以上的空间中的球面,对应的2维空间中就是曲线,3维空间中就是球面,3维以上的称为超球面),把这堆数据全都包起来,识别一个新的数据点时,如果这个数据点落在超球面内,就是这个类,否则不是。例如对于2维(维数依据特征提取而定,提取的特征多,维数就高,为方便展示,举2维的例子,实际用时不可能维数这么低)数据,大概像下面这个样子:

(图引自https://kiwi.ecn.purdue.edu/rhea/index.php/One_class_svm)

有人可能会说:图上的曲线并没有把点全都包住嘛~为什么会这样呢?看原理就懂了,下面给大家讲SVDD的原理,SVDD是叫support vector domain description,想必你第一反应就是想到support vector machine(SVM),的确,它的原理和SVM很像,可以用来做one class svm,如果之前你看过SVM原理,那么下面的讲解你将会感到很熟悉。凡是讲模型,都会有一个优化目标,SVDD的优化目标就是,求一个中心为a,半径为R的最小球面

使得这个球面满足:

满足这个条件就是说要把training set中的数据点都包在球面里。

这里的是什么东西?如果你看过SVM的话,想必你已经能猜出来它的含义了,它是松弛变量,和经典SVM中的松弛变量的作用相同,它的作用就是,使得模型不会被个别极端的数据点给“破坏”了,想象一下,如果大多数的数据都在一个小区域内,只有少数几个异常数据在离它们很远的地方,如果要找一个超球面把它们包住,这个超球面会很大,因为要包住那几个很远的点,这样就使模型对离群点很敏感,说得通俗一点就是,那几个异常的点,虽然没法判定它是否真的是噪声数据,它是因为大数点都在一起,就少数几个不在这里,宁愿把那几个少数的数据点看成是异常的,以免模型为了迎合那几个少数的数据点会做出过大的牺牲,这就是所谓的过拟合(overfitting)。所以容忍一些不满足硬性约束的数据点,给它们一些弹性,同时又要保证training set中的每个数据点都要满足约束,这样在后面才能用Lagrange乘子法来求解,因为Lagrange 乘子法中是要包含约束条件的,如果你的数据都不满足约束条件,那就没法用了。注意松弛变量是带有下标i的,也就是说它是和每个数据点有关的,每个数据点都有对应的松弛变量,可以理解为:对于每个数据点来说,那个超球面可以是不一样的,根据松弛变量来控制,如果松弛变量的值一样,那超球面就一样。那个C嘛,就是调节松弛变量的影响大小,说得通俗一点就是,给那些需要松弛的数据点多少松弛的空间,如果C很大的话,那么在cost function中,由松弛变量带来的cost就大,那么training的时候会把松弛变量调小,这样的结果就是不怎么容忍那些离群点,硬是要把它们包起来,反之如果C比较小,那会给离群点较大的弹性,使得它们可以不被包含进来。现在你明白上面那个图为什么并没有把点全都包住了么?下图展示两张图,第一样图是C较小时的情形,第二张图是C较大时的情形:

(图引自https://kiwi.ecn.purdue.edu/rhea/index.php/One_class_svm)

现在有了要求解的目标,又有了约束,接下来的求解方法和SVM几乎一样,用的是Lagrangian乘子法:

注意,对参数求导并令导数等于0得到:

把上面这堆玩意带回Lagrangian函数,得到:

注意此时,其中是由共同推出来的。上面的向量内积也可以像SVM那样用核函数解决:

之后的求解步骤就和SVM中的一样了,挺复杂的,具体请参考SVM原理。

 

训练结束后,判断一个新的数据点z是否是这个类,那么就看这个数据点是否在训练出来的超球面里面,如果在里面 ,即,则判定为属于这个类。将超球面的中心用支持向量来表示,那么判定新数据是否属于这个类的判定条件就是:

如果使用核函数那就是:

参考: David M.J. Tax, Robert P.W. Duin. Support vector domain description[J]. Pattern Recognition Letters,1999,20:1191-1199.

转自:http://blog.sina.com.cn/s/blog_4ff49c7e0102vlbv.html

One Class SVM, SVDD(Support Vector Domain Description)(转)的更多相关文章

  1. 关于SVM(support vector machine)----支持向量机的一个故事

    一.预告篇: 很久很久以前,有个SVM, 然后,……………………被deep learning 杀死了…………………………………… . 完结……撒花 二.正式篇 好吧,关于支持向量机有一个故事 ,故事是 ...

  2. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  3. Introduction to One-class Support Vector Machines

    Traditionally, many classification problems try to solve the two or multi-class situation. The goal ...

  4. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  5. Support Vector Machine (2) : Sequential Minimal Optimization

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  6. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  7. 【Supervised Learning】支持向量机SVM (to explain Support Vector Machines (SVM) like I am a 5 year old )

    Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SV ...

  8. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  9. 【机器学习实战】第6章 支持向量机(Support Vector Machine / SVM)

    第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/lates ...

随机推荐

  1. 什么是“鸭子类型(duck typing)”?

    在计算机编程世界里会接触到一个知识点 —— duck typing,叫“鸭子类型”.   它有一个形象的解释: “当看到一只鸟走起来像鸭子.游泳起来像鸭子.叫起来也像鸭子,那么这只鸟就可以被称为鸭子. ...

  2. linux Centos 6.5 FTP服务原理及vsfptd的安装、配置(转)

    本篇随笔将讲解FTP服务的原理以及vsfptd这个最常用的FTP服务程序的安装与配置... 一.FTP服务原理 FTP(File Transfer Protocol)是一个非常古老并且应用十分广泛的文 ...

  3. Objective之ARC

    http://blog.csdn.net/siemenliu/article/details/7891345

  4. 2-Babel

    一.什么是babel babel是一个源代码到源代码的转换器.比较广泛的用法就是可以把你写的符合 ECMAScript 6 标准的代码完美地转换为 ECMAScript 5 标准的代码,并且可以确保良 ...

  5. zh-cn en-uk、zh-tw表示语言(文化)代码与国家地区对照表(最全的各国地区对照表)

    af 公用荷兰语 af-ZA 公用荷兰语 - 南非 sq 阿尔巴尼亚 sq-AL 阿尔巴尼亚 -阿尔巴尼亚 ar 阿拉伯语 ar-DZ 阿拉伯语 -阿尔及利亚 ar-BH 阿拉伯语 -巴林 ar-EG ...

  6. .Net用户控件

    用户控件用户控件是个什么东西?自定义的反复重用的控件集合 好处?1.代码重用2.结构良好3.分工开发4.局部缓存 难点:一.交换信息: 注意信息的交换只在相邻层之间进行交换,如果是嵌套交换信息除Ses ...

  7. 【leetcode❤python】Convert a Number to Hexadecimal

    #-*- coding: UTF-8 -*- class Solution(object):    hexDic={0:'0',1:'1',2:'2',3:'3',4:'4',5:'5',6:'6', ...

  8. 从Unity学UE(一)之蓝图类的使用----制作一个可控灯光

    转自:http://blog.csdn.net/u011707076/article/details/44171829 首先申明,本文章内容适合有Unity引擎基础的童鞋享用,如果不了解Unity引擎 ...

  9. FreeSWITCH 1.6在Debian 8上的安装

    鉴于上次在CentOS 7上安装不成功,这次换Debian. 现在已经成功的CentOS 7上安装好了. 感兴趣的同学移步https://freeswitch.org/confluence/displ ...

  10. geom_path: Each group consist of only one observation. Do you need to adjust the group aesthetic?

    # sample data d <- data.frame(expand.grid(x=letters[1:4], g=factor(1:2)), y=rnorm(8)) # Figure 1a ...