windows平台时间函数性能比较QueryPerformanceCounter,GetTickCount,ftime,time,GetLocalTime,GetSystemTimeAsFileTime
http://gmd20.blog.163.com/blog/static/168439232012113111759514/
执行 10000000 次, 耗时 2258,369 微秒 QueryPerformanceCounter
执行 10000000 次, 耗时 26,347 微秒 GetTickCount
执行 10000000 次, 耗时 242,879 微秒 time()
c的时间函数 time(time_t) 大概比GetSystemTimeAsFileTime慢6倍,比_ftime 快6倍
执行 10000000 次, 耗时 1310,066 微秒 _ftime
执行 10000000 次, 耗时 1722,125 微秒 GetLocalTime
执行 10000000 次, 耗时 39,131 微秒 GetSystemTimeAsFileTime
GetLocalTime耗时等于 = GetSystemTimeAsFileTime 耗时+ FileTimeToSystemTime 的耗时
------------
可以看到精度越高性能越差
GetTickCount 精度1毫秒 > GetLocalTime 精度100纳秒 (0.1 微秒) > QueryPerformanceCounter (搞不懂这个怎么这么差)
如果仅仅为了计算时间偏差,可以使用 GetSystemTimeAsFileTime,这个精度可以达到100纳秒,
msdn有个介绍。
http://msdn.microsoft.com/ZH-CN/library/windows/desktop/ms724284(v=vs.85).aspx
Contains a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601 (UTC).
It is not recommended that you add and subtract values from the FILETIME structure to obtain relative times. Instead, you should copy the low- and high-order parts of the file time to a ULARGE_INTEGER structure, perform 64-bit arithmetic on the QuadPart member, and copy the LowPart and HighPart members into the FILETIME structure.
Do not cast a pointer to a FILETIME structure to either a ULARGE_INTEGER* or __int64* value because it can cause alignment faults on 64-bit Windows.
测试代码如下
#include <iomanip>#include <fstream>#include <iostream>#include <map>#include <sstream>#include <list>#include <vector>#include <stdlib.h>#include <stdint.h>#include <stdio.h>#include <sys/types.h>#include <sys/timeb.h>#include <time.h>#include <Windows.h>#include "Trace.h" using namespace std; int main (int, char**){ LARGE_INTEGER freq, t0, t1; QueryPerformanceFrequency(&freq); size_t number = 10000000; int total_counter = 0; //LARGE_INTEGER t3; //struct timeb timebuffer; SYSTEMTIME lt; FILETIME SystemTimeAsFileTime; QueryPerformanceCounter(&t0); for (int i=0; i< number; i++) { //QueryPerformanceCounter(&t3); //total_counter += t3.LowPart; //total_counter += GetTickCount(); //ftime(&timebuffer); //total_counter += timebuffer.time; //GetLocalTime(<); //total_counter += lt.wMilliseconds; // total_counter += _time32(NULL); time(NULL) GetSystemTimeAsFileTime(&SystemTimeAsFileTime); FileTimeToSystemTime(&SystemTimeAsFileTime,<); total_counter += lt.wMilliseconds; } QueryPerformanceCounter(&t1); int time = (((t1.QuadPart-t0.QuadPart)*1000000)/freq.QuadPart); std::cout << "执行 " << number <<" 次, 耗时 " << time << " 微秒" << std::endl; std::cout << total_counter; int a; cin >> a; return 0;}c语言精确到微妙 GetSystemTimeAsFileTime
c语言库函数中的clock()函数只能精确到ms,若想更精确的us,在网络上查了一遍,完整的可行的解决方案繁琐,实在没时间去仔细琢磨。不过找到了一个简洁的方案:调用GetSystemTimeAsFileTime函数,单位是100ns。
1秒=1,000,000 微秒(μs) 1微秒=1/1,000,000秒(s)
1秒=1,000,000,000 纳秒(ns) 1纳秒=1/1,000,000,000秒(s)
1秒=1,000,000,000,000 皮秒(ps) 1皮秒=1/1,000,000,000,000秒(s)
windows平台时间函数性能比较QueryPerformanceCounter,GetTickCount,ftime,time,GetLocalTime,GetSystemTimeAsFileTime的更多相关文章
- (转)windows平台时间函数性能比较QueryPerformanceCounter,GetTickCount,ftime,time,GetLocalTime,GetSystemTimeAsFileTime
执行 10000000 次, 耗时 2258,369 微秒 QueryPerformanceCounter 执行 10000000 次, 耗时 26,347 微秒 GetTickCoun ...
- Windows 各种计时函数总结(QueryPerformanceCounter可以达到微秒)
本文对Windows平台下常用的计时函数进行总结,包括精度为秒.毫秒.微秒三种精度的5种方法.分为在标准C/C++下的二种time()及clock(),标准C/C++所以使用的time()及clock ...
- Windows获取时间函数(使用GetLocalTime,GetSystemTime,SystemTimeToTzSpecificLocalTime,GetFileTime API函数
获取本地时间 typedef struct _SYSTEMTIME { WORD wYear; WORD wMonth; WORD wDayOfWeek; WORD wDay; WORD wHour; ...
- windows时间函数
介绍 我们在衡量一个函数运行时间,或者判断一个算法的时间效率,或者在程序中我们需要一个定时器,定时执 行一个特定的操作,比如在多媒体中,比如在游戏中等,都会用到时间函数.还比如我们通过记 ...
- Windows 各种计时函数总结
本文对Windows平台下常用的计时函数进行总结,包括精度为秒.毫秒.微秒三种精度的 5种方法.分为在标准C/C++下的二种time()及clock(),标准C/C++所以使用的time()及cloc ...
- <转>Windows 各种计时函数总结
本文转自MoreWindows 特此标识感谢 http://blog.csdn.net/morewindows/article/details/6854764 本文对Windows平台下常用的计时函数 ...
- Windows高精度时间
目录 第1章计时 1 1.1 GetTickCount 1 1.2 timeGetTime 1 1.3 QueryPerformanceCounter 1 1.4 测试 ...
- windows获取时间的方法
介绍 我们在衡量一个函数运行时间,或者判断一个算法的时间效率,或者在程序中我们需要一个定时器,定时执 行一个特定的操作,比如在多媒体中,比如在游戏中等,都会用到时间函数.还比如我们通过记录 ...
- C++程序在Windows平台上各种定位内存泄漏的方法,并对比了它们的优缺点
一.前言 在Linux平台上有valgrind可以非常方便的帮助我们定位内存泄漏,因为Linux在开发领域的使用场景大多是跑服务器,再加上它的开源属性,相对而言,处理问题容易形成“统一”的标准.而在W ...
随机推荐
- WPF命令参数CommandParameter
XAML代码如下: <Window x:Class="Demo006.MainWindow" xmlns="http://schemas.microsoft.com ...
- RAID磁盘阵列学习笔记
RAID是“Redundant Array of Independent Disk”的缩写,中文意思是独立冗余磁盘阵列.简单地解释,就是将N台硬盘通过RAID Controller(分Hardware ...
- ssh-copy-id(双机互信)
最简单的2步骤: ssh-keygen -t rsa 需要输入的地方就回车 ssh-copy-id root@192.168.0.10 详细:ssh-keygen 创建公钥和密钥. ssh-copy- ...
- 条件随机场CRF简介
http://blog.csdn.net/xmdxcsj/article/details/48790317 Crf模型 1. 定义 一阶(只考虑y前面的一个)线性条件随机场: 相比于最大熵模型的输 ...
- iOS-CALayer遮罩效果
self.view.backgroundColor = [UIColor blackColor]; , , , ); self.imageLayer.contents = (__ ...
- POJ 1274
#include<iostream> #include<stdio.h> #include <string.h> #include <vector> # ...
- JUC回顾之-ThreadPoolExecutor的原理和使用
Spring中的ThreadPoolTaskExecutor是借助于JDK并发包中的java.util.concurrent.ThreadPoolExecutor来实现的.基于ThreadPoolEx ...
- hdu 4628(状态压缩)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4628 思路:首先把所有的回文找出来,如果当前状态为回文,则dp[state]=1,否则dp[state ...
- 华为上机:IP地址转换
IP地址转换 描述: IP地址的长度为32,即有2^32-1个地址.IP地址一般采用点分十进制表示法,例如"192.168.1.1".IP地址也可以直接用一个32位的整数进行表示. ...
- mp3 音频 音乐 tag ID3 ID3V1 ID3V2 标签 读取信息 获得图片 jpeg bmp 图片转换等
mp3 音频 音乐 tag ID3 ID3V1 ID3V2 标签 读取信息 获得图片 jpeg bmp 图片转换(上) MP3文件格式(二)---ID3v2 图:ID3V1标签结构 图:ID3V2标签 ...