题目1 : 网络流一·Ford-Fulkerson算法

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Hi和小Ho住在P市,P市是一个很大很大的城市,所以也面临着一个大城市都会遇到的问题:交通拥挤。

小Ho:每到周末回家感觉堵车都是一种煎熬啊。

小Hi:平时交通也还好,只是一到上下班的高峰期就会比较拥挤。

小Ho:要是能够限制一下车的数量就好了,不知道有没有办法可以知道交通系统的最大承受车流量,这样就可以限制到一个可以一直很顺畅的数量了。

小Hi:理论上是有算法的啦。早在1955年,T.E.哈里斯就提出在一个给定的网络上寻求两点间最大运输量的问题。并且由此产生了一个新的图论模型:网络流。

小Ho:那具体是啥?

小Hi:用数学的语言描述就是给定一个有向图G=(V,E),其中每一条边(u,v)均有一个非负数的容量值,记为c(u,v)≥0。同时在图中有两个特殊的顶点,源点S和汇点T。

举个例子:

其中节点1为源点S,节点6为汇点T。

我们要求从源点S到汇点T的最大可行流量,这个问题也被称为最大流问题。

在这个例子中最大流量为5,分别为:1→2→4→6,流量为1;1→3→4→6,流量为2;1→3→5→6,流量为2。

小Ho:看上去好像挺有意思的,你让我先想想。

输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:1个整数,表示给定图G的最大流。

提示:Ford-Fulkerson算法

小Hi:在你思考完成之前,我再给你讲一些网络流的性质好了。

对于任意一个时刻,设f(u,v)实际流量,则整个图G的流网络满足3个性质:

1. 容量限制:对任意u,v∈V,f(u,v)≤c(u,v)。

2. 反对称性:对任意u,v∈V,f(u,v) = -f(v,u)。从u到v的流量一定是从v到u的流量的相反值。

3. 流守恒性:对任意u,若u不为S或T,一定有∑f(u,v)=0,(u,v)∈E。即u到相邻节点的流量之和为0,因为流入u的流量和u点流出的流量相等,u点本身不会"制造"和"消耗"流量。

对于上面例子中的图,其对应的f网络图为(其中虚线表示实际不存在的边(v,u)):

在此基础上,假设我们用cf(u,v)来表示c(u,v)-f(u,v),则可以表示每一条边还剩下多少的流量可以使用,我们称为残留容量。

假设一条边(u,v),其容量为3,使用了流量f(u,v)=2,则可以表示为:cf(u,v)=1, cf(v,u)=2。

由cf(u,v)构成的图我们称为残留网络。

比如例子中的残留网络图为:

小Ho,你可以从残留网络作为着手点,会比较简单。

小Ho:残留网络,残留网络也就是可以使用的流量......我知道了!

既然残留网络表示还可以使用的流量,那么我就可以从图中找出一条从S到T的路径p,使得路径p上所有边的cf(u,v)都大于0。

假设路径p上最小的cf(u,v)等于k,那我就可以使得S到T增加k的流量。

小Hi:没错,通过该条路径p使得图G的最大流得到了增加,所以这样的路径p被称为增广路径。

小Ho:我大概有一个简单的算法了!

首先我根据读入的信息,就可以得到最初的图G,然后将其转化为残留网络。

接下来我在残留网络上寻找是否有增广路径,如果不存在增广路径,则说明这个图不能再增加流量了。

若存在增广路径,则我将最大流量增加,同时对增广路径上的边cf(u,v)进行修改,再重复寻找增广路径。

整个过程大概就是:

While ( findAugmentPath() ) // 判断是否有增广路
maxFlow = maxFlow + delta // 最大流增加
modifyGraph() // 对增广路进行修改
End While

小Hi:那么你打算怎么实现寻找增广路和修改路径呢?

小Ho:寻找增广路的话,直接使用BFS从源点S开始搜索,记录每个点的路径以及路径上的最小残余容量:

findAugmentPath():
queue = [] // 重置搜索队列
path = [] // 初始化路径数组为0
capacity = [] // 初始化流量数组为0
visited = [] // 初始化访问数组为false
tail = 0
queue[ tail ] = S // 将源点加入队列
capacity[S] = ∞ // 到源点的流量为无穷大
visited[S] = true
i = 0
While (i ≤ tail)
u = queue[i]
If (u == T) Then
// 已经找到一条增广路
Return capacity[T]
End If
For (u, v)∈残留网络 and cf(u,v)>0 and not visited[v]
// u到v有残留容量,且v未被访问过
path[v] = u // 记录路径
capacity[v] = min(cf(u,v), capacity[u]) // 记录路径上的最小残余容量 visited[v] = true
tail = tail + 1
queue[ tail ] = v
End For
i = i + 1
End While

而对于路径的修改,在已经有path数组的情况下,利用迭代或者回溯都可以完成:

modifyGraph():
flow = capacity[T]
now = T
While ( now is not S )
fa = path[ now ]
cf(fa, now) = cf(fa, now) - flow
cf(now, fa) = cf(now, fa) + flow // 反向的残余容量是增加
now = fa
End While

小Ho:时间复杂度方面,每一次寻找增广路的时间为O(n+m),每一次修改路径的时间复杂度为O(n)。假设图的最大流为maxflow,那么我的算法时间复杂度为O((n+m)*maxflow)。

小Hi:嗯,你所采用的算法就是最简单的最大流解决办法,最早是由L.R.Ford和D.R.Fulkerson在1956年时发表,因此也被称为Ford-Fulkerson算法。对于第一次接触网络流而言,可以先试着实现这个算法,对于你理解网络流会有很大的帮助。

小Ho:不过小Hi,我有一个小疑问,虽然我直观上感觉找不到新的增广路时就已经是最大流了,但这真的没有问题么?

小Hi:找不到增广路确实是等价于找到最大流,不过具体的证明嘛,请听下回分解。

看了一下这个Ford-Fulkerson算法,感觉和EK很相似,都是BFS不断增广。

然后,我当时有个数组没有开足够,竟然是TLE,后来学了一下Dinic算法。

这里总结一下这3个算法:

Ford-Fulkerson: 也是最初的最大流算法,简单讲就是,不断DFS增广,直到找不到增广路。

Edmonds-Karp:是FF的变形,不断BFS增广,直到找不到增广路。

Dinic:BFS分层,DFS增广。

#include <bits/stdc++.h>

using namespace std;

#define maxn 505
#define INF 0x3f3f3f3f struct Edge
{
int from,to,cap,flow;
}; struct Dinic
{
int n,m,s,t;
vector<Edge> edge;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void addEdge (int from,int to,int cap)
{
edge.push_back((Edge){from,to,cap,});
edge.push_back((Edge){to,from,,});
m = edge.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = ;
vis[s] = ;
while(!Q.empty())
{
int x = Q.front();
Q.pop();
for(int i=; i<G[x].size(); i++)
{
Edge & e = edge[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to] = ;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if(x==t||a==) return a;
int flow = ,f;
for(int & i = cur[x]; i<G[x].size(); i++)
{
Edge & e = edge[G[x][i]];
if(d[x] + ==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>)
{
e.flow +=f;
edge[G[x][i]^].flow -=f;
flow +=f;
a-=f;
if(a==) break;
}
}
return flow;
} int Maxflow (int s,int t) {
this->s = s;this->t = t;
int flow = ;
while(BFS()) {
memset(cur,,sizeof(cur));
flow+=DFS(s,INF);
}
return flow;
}
}sol; int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<m;i++) {
int u,v,cap;
scanf("%d%d%d",&u,&v,&cap);
sol.addEdge(u,v,cap);
}
printf("%d\n",sol.Maxflow(,n));
return ;
}

hiho一下,第115周,FF,EK,DINIC的更多相关文章

  1. hiho一下 第115周:网络流一•Ford-Fulkerson算法 (Edmond-Karp,Dinic,SAP)

    来看一道最大流模板水题,借这道题来学习一下最大流的几个算法. 分别用Edmond-Karp,Dinic ,SAP来实现最大流算法. 从运行结过来看明显SAP+当前弧优化+gap优化速度最快.   hi ...

  2. 「模板」网络最大流 FF && EK && Dinic && SAP && ISAP

    话不多说上代码. Ford-Fulkerson(FF) #include <algorithm> #include <climits> #include <cstdio& ...

  3. 图论算法-最小费用最大流模板【EK;Dinic】

    图论算法-最小费用最大流模板[EK;Dinic] EK模板 const int inf=1000000000; int n,m,s,t; struct node{int v,w,c;}; vector ...

  4. 图论算法-网络最大流【EK;Dinic】

    图论算法-网络最大流模板[EK;Dinic] EK模板 每次找出增广后残量网络中的最小残量增加流量 const int inf=1e9; int n,m,s,t; struct node{int v, ...

  5. 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point

    // 圆内,求离圆心最远的整数点 hiho一下第111周 Farthest Point // 思路:直接暴力绝对T // 先确定x范围,每个x范围内,离圆心最远的点一定是y轴两端的点.枚举x的范围,再 ...

  6. hiho一下115周 网络流

    小Hi和小Ho住在P市,P市是一个很大很大的城市,所以也面临着一个大城市都会遇到的问题:交通拥挤. 小Ho:每到周末回家感觉堵车都是一种煎熬啊. 小Hi:平时交通也还好,只是一到上下班的高峰期就会比较 ...

  7. poj1459 Power Network --- 最大流 EK/dinic

    求从电站->调度站->消费者的最大流,给出一些边上的容量.和电站和消费者能够输入和输出的最大量. 加入一个超级源点和汇点,建边跑模板就能够了. 两个模板逗能够. #include < ...

  8. 初涉网络流[EK&dinic]

    主要还是板子 Edmonds-Karp 从S开始bfs,直到找到一条到达T的路径后将该路径增广,并重复这一过程. 在处理过程中,为了应对“找到的一条路径把其他路径堵塞”的情况,采用了建反向弧的方式来实 ...

  9. 网络流小记(EK&dinic&当前弧优化&费用流)

    欢 迎 来 到 网 络 瘤 的 世 界 什么是网络流? 现在我们有一座水库,周围有n个村庄,每个村庄都需要水,所以会修水管(每个水管都有一定的容量,流过的水量不能超过容量).最终水一定会流向唯一一个废 ...

随机推荐

  1. compilation filed Unable to write to path xxxxxx 遇到这种情况的话

    如果是xib文件的话 查看target —>Build Phases —> Copy Bundle Resources里面查看路径. 可能有重复路径导致编译不通过.

  2. php实用类

    <?php class DBDA { public $host="localhost";//服务器地址 public $uid="root";//用户名 ...

  3. 转:Jmeter之Bean shell使用(一)

    一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanS ...

  4. [摘录]quarts:feature

    Features of Quartz Runtime Environments Quartz can run embedded within another free standing applica ...

  5. thinkphp介绍

    1.thinkphp是一个免费的开源的轻量级的高效的国产的php框架 2.现在主流的框架有:   zend framwork 框架,功能十分齐全,是php官网开发的一个框架   yii框架 十分轻巧的 ...

  6. asp,asp.net 以表格输出excel,数据默认科学计数的解决办法

    关键字:  style="vnd.ms-excel.numberformat:@" 问题:在用table仿excel生成中经常遇到类似于身份证的长整数类型excel默认当成科学计数 ...

  7. 取客户的银行帐号SQL

    SELECT ibybanks.bank_name, --银行 ibybanks.bank_branch_name, --分行 ibybanks.bank_account_num_electronic ...

  8. 夺命雷公狗ThinkPHP项目之----企业网站2之数据库的快速设计

    我们在一个项目的时候,花费最多事件的估计还是数据库的时间了,我们的数据库暂时就这样设计好了: 暂时我们的数据库就这样设计好了用下先,建好后如下所示:

  9. knockout之各种数据绑定方法:text、attr、visible、html、css、style绑定

    http://knockoutjs.com/documentation/attr-binding.html(Knockout官网文档) 1.text绑定 目的:text 绑定到DOM元素上,使得该元素 ...

  10. [转][Automation]- C# SendKey代码表

    使用 SendKeys 将键击和组合键击发送到活动应用程序.此类无法实例化.若要发送一个键击给某个类并立即继续程序流,请使用 Send.若要等待键击启动的任何进程,请使用 SendWait. 每个键都 ...