hustoj1353 节点选择 树形dp
1353: 结点选择
时间限制: 1 Sec 内存限制: 128 MB
提交: 6 解决: 2
[提交][状态][讨论版]
题目描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?
对于20%的数据, n <= 20。
对于50%的数据, n <= 1000。
对于100%的数据, n <= 100000。
权值均为不超过1000的正整数。
输入
第一行包含一个整数 n 。
接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。
接下来一共 n-1 行,每行描述树上的一条边。
输出
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
提示
本题n过大,用邻接表储存就行,注意判断后继节点的时候,不要在回溯到前驱节点
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
int to,nex;
}edge[];
int head[];
int dp[][];
bool vis[];
int cnt; void addedge(int u,int v){
edge[cnt].to=v;
edge[cnt].nex=head[u];
head[u]=cnt++;
edge[cnt].to=u;
edge[cnt].nex=head[v];
head[v]=cnt++;
} void dfs(int v,int pre){
vis[v]=true;
for(int i=head[v];i!=-;i=edge[i].nex){
int tmp=edge[i].to;
if(tmp==pre)//注意
continue;
dfs(tmp,v);
dp[v][]+=max(dp[tmp][],dp[tmp][]);
dp[v][]+=dp[tmp][]; }
} int main(){
int n;
while(scanf("%d",&n)!=EOF){
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++){
scanf("%d",&dp[i][]);
}
int a,b;
cnt=;
for(int i=;i<n;i++){
scanf("%d%d",&a,&b);
addedge(a,b);
}
dfs(,-);
int ans=max(dp[][],dp[][]);
printf("%d\n",ans);
}
return ;
}
hustoj1353 节点选择 树形dp的更多相关文章
- 【树形DP】JSOI BZOJ4472 salesman
题目内容 vjudge链接 某售货员小T要到若干城镇去推销商品,由于该地区是交通不便的山区,任意两个城镇 之间都只有唯一的可能经过其它城镇的路线. 小T 可以准确地估计出在每个城镇停留的净收 益.这些 ...
- 树形dp——覆盖所有边的最少费用(Protecting Zonk)
一.问题描述 有一个n(n<=10000)个节点的无根树.有两种装置A,B,每种都有无限多个. 1.在某个节点X使用A装置需要C1(C1<=1000)的花费,并且此时与节点X相连的边都被覆 ...
- hdu 6035(树形dp)
题意:给你棵树,树上每个节点都有颜色,每条路径上有m种颜色 问你所有路径上出现的颜色的和 思路:答案求的是每种颜色对路径的贡献 我们可以反过来每种颜色不经过的路径的条数 假设根节点的颜色为x 我 ...
- 树形DP UVA 1292 Strategic game
题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...
- poj2342 Anniversary party (树形dp)
poj2342 Anniversary party (树形dp) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9128 ...
- 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp
目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...
- CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。
题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...
- 结点选择(树形DP)
Description 有一棵 n 个节点的树,树上每个节点都有一个正整数权值.如果一个点被选择了,那么在树上和它相邻的点都不能被选择.求选出的点的权值和最大是多少? Input 接下来的一行包含 n ...
- 算法进阶面试题05——树形dp解决步骤、返回最大搜索二叉子树的大小、二叉树最远两节点的距离、晚会最大活跃度、手撕缓存结构LRU
接着第四课的内容,加入部分第五课的内容,主要介绍树形dp和LRU 第一题: 给定一棵二叉树的头节点head,请返回最大搜索二叉子树的大小 二叉树的套路 统一处理逻辑:假设以每个节点为头的这棵树,他的最 ...
随机推荐
- Java Connection.setAutoCommit
Java setAutoCommit 默认为true,即每条SQL语句在各自的一个事务中执行. 很多时候需要有多个操作在一个事务执行,如循环插入,此时可在插入开始前设置 conn.setAutoCom ...
- Unity Sprite Atlas Compression
http://forum.unity3d.com/threads/2d-sprite-packer-and-pvrtc.218633/ http://docs.unity3d.com/Manual/S ...
- Construct Bounding Sphere
点集的包围球 http://en.wikipedia.org/wiki/Bounding_sphere http://blogs.agi.com/insight3d/index.php/2008/02 ...
- php 生成随机字符串 abcdeft....789
) { $chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; $str = &quo ...
- MSSQL日期格式化
Sql Server 中一个非常强大的日期格式化函数 Select CONVERT(varchar(100), GETDATE(), 0): 05 16 2006 10:57AM Select CON ...
- inline-block元素overflow:hidden对齐问题
inline-block元素设置overflow:hidden后,其本身会上移 解决方法:在该元素或其父元素上设置vertical-align:bottom 原因解释:inline-block元素被设 ...
- 3步完成chrome切换搜索引擎
1.打开chrome://settings/,找到搜索 2.点击“管理搜索引擎”,出现弹窗. 增加搜索引擎,三个文本框分别输入:名称.快捷键.地址 3.在新的选项卡中,输入快捷键(如:github), ...
- STL删除元素
1.从vector中删除多个元素: #include <iostream> #include <vector> int main() { std::vector<int& ...
- 2015年12月03日 GitHub入门学习(五)Markdown语法简介
Markdown一种标记语言,语法简洁,不像Word或Pages有大量排版.字体设置.常用的标记符号不超过十个.被大量写作爱好者.撰稿人.作家所青睐. 一.Markdown的优点 专注你的文字内容而不 ...
- php——文件下载
php——.doc 文件下载 先看简单实例: 同目录下有两个文件ib.php,test.php与供下载 .doc 文件: test.php文件内容: <?php $attr = glob(&qu ...