前言

本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程

##本章知识点概括
- Apache Spark简介
- Spark的四种运行模式
- Spark基于Standlone的运行流程
- Spark基于YARN的运行流程

Apache Spark是什么?

Spark是一个用来实现快速而通用的集群计算的平台。扩展了广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询和流处理。在处理大规模数据集的时候,速度是非常重要的。Spark的一个重要特点就是能够在内存中计算,因而更快。即使在磁盘上进行的复杂计算,Spark依然比MapReduce更加高效。

Spark重要概念

(1)Spark运行模式

目前Spark的运行模式主要有以下几种:

  • local:主要用于开发调试Spark应用程序
  • Standlone:利用Spark自带的资源管理与调度器运行Spark集群,采用Master/Slave结构,为解决单点故障,可以采用Xookeeper实现高可靠(High Availability, HA)
  • Apache Mesos:运行在著名的Mesos资源管理框架基础之上,该集群运行模式将资源管理管理交给Mesos,Spark只负责运行任务调度和计算
  • Hadoop YARN:集群运行在Yarn资源管理器上,资源管理交给YARN,Spark只负责进行任务调度和计算

    Spark运行模式中Hadoop YARN的集群方式最为常用,前面一章关于Spark集群搭建就是采用的YARN模式。

(2)Spark组件(Components)

一个完整的Spark应用程序,如前面一章当中的SparkWorkdCount程序,在提交集群运行时,它涉及到如下图所示的组件:

每个Spark应用都由一个驱动器程序(drive program)来发起集群上的各种并行操作。驱动器程序包含应用的main函数,驱动器负责创建SparkContext,SparkContext可以与不同种类的集群资源管理器(Cluster Manager),例如Hadoop YARN,Mesos进行通信,获取到集群进行所需的资源后,SparkContext将

得到集群中工作节点(Worker Node)上对应的Executor(不同的Spark程序有不同的Executor,他们之间是相互独立的进程,Executor为应用程序提供分布式计算以及数据存储功能),之后SparkContext将应用程序代码发送到各Executor,最后将任务(Task)分配给executors执行

  • ClusterManager:在Standalone模式中即为Master节点(主节点),控制整个集群,监控Worker.在YARN中为ResourceManager
  • Worker:从节点,负责控制计算节点,启动Executor或Driver。在YARN模式中为NodeManager,负责计算节点的控制。
  • Driver:运行Application的main()函数并创建SparkContect。
  • Executor:执行器,在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executor。
  • SparkContext:整个应用的上下文,控制应用的生命周期。
  • RDD:Spark的计算单元,一组RDD可形成执行的有向无环图RDD Graph。
  • DAG Scheduler:根据作业(Job)构建基于Stage的DAG,并提交Stage给TaskScheduler。
  • TaskScheduler:将任务(Task)分发给Executor。
  • SparkEnv:线程级别的上下文,存储运行时的重要组件的引用。

    SparkEnv内构建并包含如下一些重要组件的引用。


    1、MapOutPutTracker:负责Shuffle元信息的存储。

    2、BroadcastManager:负责广播变量的控制与元信息的存储。

    3、BlockManager:负责存储管理、创建和查找快。

    4、MetricsSystem:监控运行时性能指标信息。

    5、SparkConf:负责存储配置信息。

Spark的整体流程

1、Client提交应用。
2、Master找到一个Worker启动Driver
3、Driver向Master或者资源管理器申请资源,之后将应用转化为RDD Graph
4、再由DAGSchedule将RDD Graph转化为Stage的有向无环图提交给TaskSchedule。
5、再由TaskSchedule提交任务给Executor执行。
6、其它组件协同工作,确保整个应用顺利执行。

图片:

Spark on Yarn流程:

1、基于YARN的Spark作业首先由客户端生成作业信息,提交给ResourceManager。
2、ResourceManager在某一NodeManager汇报时把AppMaster分配给NodeManager。
3、NodeManager启动SparkAppMaster。
4、SparkAppMastere启动后初始化然后向ResourceManager申请资源。
5、申请到资源后,SparkAppMaster通过RPC让NodeManager启动相应的SparkExecutor。
6、SparkExecutor向SparkAppMaster汇报并完成相应的任务。
7、SparkClient会通过AppMaster获取作业运行状态。

参考文档

问题

  • 针对SparkContext和Drive program还没有解释清楚
  • 关于Driver向Master请求资源这一块还没搞懂
  • 关于Spark的整体流程图还是不太准确,以后找到好的再补上

Spark中文指南(入门篇)-Spark编程模型(一)的更多相关文章

  1. 转载:Spark中文指南(入门篇)-Spark编程模型(一)

    原文:https://www.cnblogs.com/miqi1992/p/5621268.html 前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apac ...

  2. Spark性能优化指南-高级篇(spark shuffle)

    Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解

  3. Java工程师学习指南 入门篇

    Java工程师学习指南 入门篇 最近有很多小伙伴来问我,Java小白如何入门,如何安排学习路线,每一步应该怎么走比较好.原本我以为之前的几篇文章已经可以解决大家的问题了,其实不然,因为我之前写的文章都 ...

  4. Spark下载与入门(Spark自学二)

    2.1 下载Spark 略 2.2 Spark中Python和Scala的shell Spark shell可用来与分布式存储在许多机器的内存或者硬盘上的数据进行交互,并且处理过程的分发由Spark自 ...

  5. Spark性能优化指南——基础篇

    本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一 ...

  6. Java工程师学习指南(入门篇)

    Java工程师学习指南 入门篇 最近有很多小伙伴来问我,Java小白如何入门,如何安排学习路线,每一步应该怎么走比较好.原本我以为之前的几篇文章已经可以解决大家的问题了,其实不然,因为我之前写的文章都 ...

  7. Spark开发指南

    原文链接http://www.sxt.cn/info-2730-u-756.html 目录 Spark开发指南 简介 接入Spark Java 初始化Spark Java 弹性分布式数据集 并行集合 ...

  8. Spark入门实战系列--3.Spark编程模型(上)--编程模型及SparkShell实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spar ...

  9. Spark入门实战系列--3.Spark编程模型(下)--IDEA搭建及实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 . 安装IntelliJ IDEA IDEA 全称 IntelliJ IDEA,是java语 ...

随机推荐

  1. 李洪强iOS经典面试题134-C语言

    可能碰到的iOS笔试面试题(4)--C语言   C语言,开发的基础功底,iOS很多高级应用都要和C语言打交道,所以,C语言在iOS开发中的重要性,你懂的.里面的一些问题可能并不是C语言问题,但是属于计 ...

  2. [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数

    LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...

  3. Struts2中上传图片案列

    1.HTML代码 <body> <!--上传一个文件   enctype="multipart/form-data" 上传文件必须设置这个属性和属性值--> ...

  4. spring注解实现AOP

    项目结构图

  5. A+B Problem III-(涉及误差)NYOJ-477

    描述求A+B是否与C相等.   输入 T组测试数据. 每组数据中有三个实数A,B,C(-10000.0<=A,B<=10000.0,-20000.0<=C<=20000.0) ...

  6. 【转】统计模型-n元文法

    在谈N-Gram模型之前,我们先来看一下Mrkove假设: 1.一个词的出现仅仅依赖于它前面出现的有限的一个或者几个词: 2.一个词出现的概率条件地依赖于前N-1个词的词类. 定义 N-Gram是大词 ...

  7. EmguCV 阈值化

    一.public static double cvThreshold( IntPtr src, IntPtr dst, double threshold, double maxValue, //Max ...

  8. dom4j解析xml文档&保存数据的乱码问题

    package itcast.dom4j; import java.io.File; import java.io.FileOutputStream; import java.io.FileWrite ...

  9. Apache按日切分日志

    apache按日切分日志,使用apache自带的rotatelogs切分 语法: rotatelogs [ -l ] logfile [ rotationtime [ offset ]] | [ fi ...

  10. mysql笔记(存储引擎)

    读写锁:. 表级锁:开销小,加锁快:不会出现死锁:锁定粒度大,发生锁冲突的概率最高,并发度最低. 行级锁:开销大,加锁慢:会出现死锁:锁定粒度最小,发生锁冲突的概率最低,并发度也最高. 页面锁:开销和 ...