ZOJ2314 Reactor Cooling
Reactor Cooling
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:
fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample Input
2
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Sample Input
NO
YES
1
2
3
2
1
1
被迫沉迷文化课,更博速度骤减……
无源汇的上下界网络流
/*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt,f;
}e[mxn*mxn*],c[mxn*mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int c){
e[++mct].v=v;e[mct].f=c;e[mct].nxt=hd[u];hd[u]=mct;return;
}
void insert(int u,int v,int c){
add_edge(u,v,c);add_edge(v,u,);return;
}
int n,m,S,T;
int in[mxn],low[mxn*mxn*];//待平衡流量 最小流量
int d[mxn];
bool BFS(){
memset(d,,sizeof d);
d[S]=;
queue<int>q;
q.push(S);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;q.push(v);
}
}
}
return d[T];
}
int DFS(int u,int lim){
if(u==T)return lim;
int tmp,f=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f){
tmp=DFS(v,min(lim,e[i].f));
e[i].f-=tmp;
e[i^].f+=tmp;
lim-=tmp;
f+=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
int Dinic(){
int res=;
while(BFS())res+=DFS(S,1e9);
return res;
}
bool pd(){
for(int i=hd[S];i;i=e[i].nxt)
if(e[i].f)return ;//附加边未跑满流,不可行
return ;
}
void init(){
memset(hd,,sizeof hd);
memset(in,,sizeof in);
mct=;
return;
}
int main(){
int cas=read();
int i,j,u,v,w;
while(cas--){
init();
n=read();m=read();
S=;T=n+;
for(i=;i<=m;i++){
u=read();v=read();low[i]=read();w=read();
in[u]-=low[i];in[v]+=low[i];
insert(u,v,w-low[i]);
}
for(i=;i<=n;i++){//强制平衡流量
if(in[i]>)insert(S,i,in[i]);
else if(in[i]<)insert(i,T,-in[i]);
}
Dinic();
if(!pd()){
printf("NO\n\n");
continue;
}
printf("YES\n");
for(i=;i<=m;i++){
printf("%d\n",e[(i*)^].f+low[i]);
}
printf("\n");
}
return ;
}
Reactor Cooling
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:
fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample Input
2
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Sample Input
NO
YES
1
2
3
2
1
1
ZOJ2314 Reactor Cooling的更多相关文章
- ZOJ2314 Reactor Cooling(有上下界的网络流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- ZOJ2314 Reactor Cooling(无源汇上下界可行流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- ZOJ2314 Reactor Cooling(无源汇流量有上下界网络的可行流)
题目大概说一个核反应堆的冷却系统有n个结点,有m条单向的管子连接它们,管子内流量有上下界的要求,问能否使液体在整个系统中循环流动. 本质上就是求一个无源汇流量有上下界的容量网络的可行流,因为无源汇的容 ...
- 【zoj2314】Reactor Cooling 有上下界可行流
题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...
- [ZOJ2341]Reactor Cooling解题报告|带上下界的网络流|无源汇的可行流
Reactor Cooling The terrorist group leaded by a well known international terrorist Ben Bladen is bul ...
- zoj Reactor Cooling
Reactor Cooling 无源汇上下界最大流问题. 1.流量平衡. 2.满足上下界 模板题. #include <iostream> #include <queue> # ...
- acdream 1211 Reactor Cooling 【边界网络流量 + 输出流量】
称号:acdream 1211 Reactor Cooling 分类:无汇的有上下界网络流. 题意: 给n个点.及m根pipe,每根pipe用来流躺液体的.单向的.每时每刻每根pipe流进来的物质要等 ...
- 【有上下界的网络流】ZOJ2341 Reactor Cooling(有上下界可行流)
Description The terrorist group leaded by a well known international terrorist Ben Bladen is bulidi ...
- ZOJ 1314 Reactor Cooling | 上下界无源汇可行流
ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...
随机推荐
- 在Azure上搭建Orchard CRM入口网站
这是英文版:Setup Orchard CRM portal website on Azure
- httpserver
改了下 # -*- coding:utf-8 -*- from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler HOST = &quo ...
- 一个C++宏定义与枚举定义重复的编译错误
C++的开发效率低是众所周知的,原因比如有: 语言复杂度高 编译效率低 工具链不够完整高效(尤其是linux下) 另外一个恐怕是不少编译错误让人摸不着头脑,今天碰到一个,举个例子: #include ...
- 高性能JavaScript 达夫设备
前言 在<高性能JavaScript>一书的第四章算法和流程控制中,提到了减少迭代次数加速程序的策略—达夫设备(Duff's device).达夫设备本身很好理解,但是其效果是否真的像书中 ...
- 彻底理解Toast原理和解决小米MIUI系统上没法弹Toast的问题
1.Toast的基本使用 Toast在Android中属于系统消息通知,用来提示用户完成了什么操作.或者给用户一个必要的提醒.Toast的官方定义是这样的: A toast provides simp ...
- jQuery 插件编程精讲与技巧
适应的读者: 1.有一定的jquery编程基础但是想在技能上有所提升的人 2.前端开发的程序员 3.对编程感兴趣的学生 为什么要学习jquery插件的编写? 为什么要学习jquery插件的编写?相信这 ...
- rhel7修改网卡命名规则
1步:当安装完红帽RHEL7系统安装完成,您的网卡命名是这样的. 第2步:请编辑网卡的配置文件 将”/etc/sysconfig/network-scripts/ifcfg-eno16777736“的 ...
- 37-more 简明笔记
分页显示文本 more [options] file more用于分页显示文本文件,最早出现在BSD当中,但这一命令非常基本,后来less命令对其做了增强,所谓的less也就是少即是多 参数 file ...
- 数据库高可用架构(MySQL、Oracle、MongoDB、Redis)
一.MySQL MySQL小型高可用架构 方案:MySQL双主.主从 + Keepalived主从自动切换 服务器资源:两台PC Server 优点:架构简单,节省资源 缺点:无法线性扩展,主从失 ...
- js 基础(一)
<!--最近需要用到js相关的知识 就把在W3cSchool 下学到的东西做个笔记,方便以后再看 --><!DOCTYPE html> <html> <hea ...