1.准备数据employee.txt

,Gong Shaocheng,
,Li Dachao,
,Qiu Xin,
,Cheng Jiangzhong,
,Wo Binggang,

将数据放入hdfs

[root@jfp3- spark-studio]# hdfs dfs -put employee.txt /user/spark_studio

2.启动spark shell

[root@jfp3- spark-1.0.-bin-hadoop2]# ./bin/spark-shell --master spark://192.168.0.71:7077

3.编写脚本

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext._ case class Employee(employeeId: Int, name: String, departmentId: Int) // Create an RDD of Employee objects and register it as a table.
val employees = sc.textFile("hdfs://jfp3-1:8020/user/spark_studio/employee.txt").map(_.split(",")).map(p => Employee(p(), p(), p().trim.toInt))
employees.registerAsTable("employee") // SQL statements can be run by using the sql methods provided by sqlContext.
val fsis = sql("SELECT name FROM employee WHERE departmentId = 1") // The results of SQL queries are SchemaRDDs and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
fsis.map(t => "Name: " + t()).collect().foreach(println)

4.运行

scala> val sqlContext = new org.apache.spark.sql.SQLContext(sc)
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@ scala> import sqlContext._
import sqlContext._ scala> case class Employee(employeeId: String, name: String, departmentId: Int)
defined class Employee scala> val employees = sc.textFile("hdfs://jfp3-1:8020/user/spark_studio/employee.txt").map(_.split(",")).map(p => Employee(p(), p(), p().trim.toInt))
// :: INFO MemoryStore: ensureFreeSpace() called with curMem=, maxMem=
// :: INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 135.5 KB, free 294.8 MB)
employees: org.apache.spark.rdd.RDD[Employee] = MappedRDD[] at map at <console>: scala> employees.registerAsTable("employee") scala> val fsis = sql("SELECT name FROM employee WHERE departmentId = 1")
// :: INFO Analyzer: Max iterations () reached for batch MultiInstanceRelations
// :: INFO Analyzer: Max iterations () reached for batch CaseInsensitiveAttributeReferences
// :: INFO SQLContext$$anon$: Max iterations () reached for batch Add exchange
// :: INFO SQLContext$$anon$: Max iterations () reached for batch Prepare Expressions
fsis: org.apache.spark.sql.SchemaRDD =
SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
Project [name#:]
Filter (departmentId#: = )
ExistingRdd [employeeId#,name#,departmentId#], MapPartitionsRDD[] at mapPartitions at basicOperators.scala: scala> fsis.map(t => "Name: " + t()).collect().foreach(println)
// :: INFO FileInputFormat: Total input paths to process :
// :: INFO SparkContext: Starting job: collect at <console>:
// :: INFO DAGScheduler: Got job (collect at <console>:) with output partitions (allowLocal=false)
// :: INFO DAGScheduler: Final stage: Stage (collect at <console>:)
// :: INFO DAGScheduler: Parents of final stage: List()
// :: INFO DAGScheduler: Missing parents: List()
// :: INFO DAGScheduler: Submitting Stage (MappedRDD[] at map at <console>:), which has no missing parents
// :: INFO DAGScheduler: Submitting missing tasks from Stage (MappedRDD[] at map at <console>:)
// :: INFO TaskSchedulerImpl: Adding task set 0.0 with tasks
// :: INFO TaskSetManager: Starting task 0.0: as TID on executor : jfp3- (NODE_LOCAL)
// :: INFO TaskSetManager: Serialized task 0.0: as bytes in ms
// :: INFO TaskSetManager: Starting task 0.0: as TID on executor : jfp3- (NODE_LOCAL)
// :: INFO TaskSetManager: Serialized task 0.0: as bytes in ms
// :: INFO TaskSetManager: Finished TID in ms on jfp3- (progress: /)
// :: INFO TaskSetManager: Finished TID in ms on jfp3- (progress: /)
// :: INFO DAGScheduler: Completed ResultTask(, )
// :: INFO DAGScheduler: Completed ResultTask(, )
// :: INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
// :: INFO DAGScheduler: Stage (collect at <console>:) finished in 1.284 s
// :: INFO SparkContext: Job finished: collect at <console>:, took 1.386154401 s
Name: Gong Shaocheng
Name: Li Dachao
Name: Qiu Xin

5.将数据存为parquet格式,并运行sql

scala> val parquetFile = sqlContext.parquetFile("hdfs://jfp3-1:8020/user/spark_studio/employee.parquet")
// :: INFO Analyzer: Max iterations () reached for batch MultiInstanceRelations
// :: INFO Analyzer: Max iterations () reached for batch CaseInsensitiveAttributeReferences
// :: INFO SQLContext$$anon$: Max iterations () reached for batch Add exchange
// :: INFO SQLContext$$anon$: Max iterations () reached for batch Prepare Expressions
parquetFile: org.apache.spark.sql.SchemaRDD =
SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
ParquetTableScan [employeeId#,name#,departmentId#], (ParquetRelation hdfs://jfp3-1:8020/user/spark_studio/employee.parquet), None scala> parquetFile.registerAsTable("parquetFile") scala> val telcos = sql("SELECT name FROM parquetFile WHERE departmentId = 3")
// :: INFO Analyzer: Max iterations () reached for batch MultiInstanceRelations
// :: INFO Analyzer: Max iterations () reached for batch CaseInsensitiveAttributeReferences
// :: INFO SQLContext$$anon$: Max iterations () reached for batch Add exchange
// :: INFO SQLContext$$anon$: Max iterations () reached for batch Prepare Expressions
// :: INFO MemoryStore: ensureFreeSpace() called with curMem=, maxMem=
// :: INFO MemoryStore: Block broadcast_1 stored as values to memory (estimated size 176.3 KB, free 294.6 MB)
telcos: org.apache.spark.sql.SchemaRDD =
SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
Project [name#:]
Filter (departmentId#: = )
ParquetTableScan [name#,departmentId#], (ParquetRelation hdfs://jfp3-1:8020/user/spark_studio/employee.parquet), None scala> telcos.collect().foreach(println)
// :: INFO FileInputFormat: Total input paths to process :
// :: INFO ParquetInputFormat: Total input paths to process :
// :: INFO ParquetFileReader: reading summary file: hdfs://jfp3-1:8020/user/spark_studio/employee.parquet/_metadata
// :: INFO deprecation: mapred.max.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.maxsize
// :: INFO deprecation: mapred.min.split.size is deprecated. Instead, use mapreduce.input.fileinputformat.split.minsize
// :: INFO SparkContext: Starting job: collect at <console>:
// :: INFO DAGScheduler: Got job (collect at <console>:) with output partitions (allowLocal=false)
// :: INFO DAGScheduler: Final stage: Stage (collect at <console>:)
// :: INFO DAGScheduler: Parents of final stage: List()
// :: INFO DAGScheduler: Missing parents: List()
// :: INFO DAGScheduler: Submitting Stage (SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
Project [name#:]
Filter (departmentId#: = )
ParquetTableScan [name#,departmentId#], (ParquetRelation hdfs://jfp3-1:8020/user/spark_studio/employee.parquet), None), which has no missing parents
// :: INFO DAGScheduler: Submitting missing tasks from Stage (SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
Project [name#:]
Filter (departmentId#: = )
ParquetTableScan [name#,departmentId#], (ParquetRelation hdfs://jfp3-1:8020/user/spark_studio/employee.parquet), None)
// :: INFO TaskSchedulerImpl: Adding task set 2.0 with tasks
// :: INFO TaskSetManager: Starting task 2.0: as TID on executor : jfp3- (NODE_LOCAL)
// :: INFO TaskSetManager: Serialized task 2.0: as bytes in ms
// :: INFO TaskSetManager: Starting task 2.0: as TID on executor : jfp3- (NODE_LOCAL)
// :: INFO TaskSetManager: Serialized task 2.0: as bytes in ms
// :: INFO DAGScheduler: Completed ResultTask(, )
// :: INFO TaskSetManager: Finished TID in ms on jfp3- (progress: /)
// :: INFO DAGScheduler: Completed ResultTask(, )
// :: INFO TaskSetManager: Finished TID in ms on jfp3- (progress: /)
// :: INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool
// :: INFO DAGScheduler: Stage (collect at <console>:) finished in 2.177 s
// :: INFO SparkContext: Job finished: collect at <console>:, took 2.210887848 s
[Wo Binggang]

6. DSL syntax支持

scala> all.collect().foreach(println)
// :: INFO SparkContext: Starting job: collect at <console>:
// :: INFO DAGScheduler: Got job (collect at <console>:) with output partitions (allowLocal=false)
// :: INFO DAGScheduler: Final stage: Stage (collect at <console>:)
// :: INFO DAGScheduler: Parents of final stage: List()
// :: INFO DAGScheduler: Missing parents: List()
// :: INFO DAGScheduler: Submitting Stage (SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
Project [name#:]
Filter (departmentId#: >= )
ExistingRdd [employeeId#,name#,departmentId#], MapPartitionsRDD[] at mapPartitions at basicOperators.scala:), which has no missing parents
// :: INFO DAGScheduler: Submitting missing tasks from Stage (SchemaRDD[] at RDD at SchemaRDD.scala:
== Query Plan ==
Project [name#:]
Filter (departmentId#: >= )
ExistingRdd [employeeId#,name#,departmentId#], MapPartitionsRDD[] at mapPartitions at basicOperators.scala:)
// :: INFO TaskSchedulerImpl: Adding task set 6.0 with tasks
// :: INFO TaskSetManager: Starting task 6.0: as TID on executor : jfp3- (NODE_LOCAL)
// :: INFO TaskSetManager: Serialized task 6.0: as bytes in ms
// :: INFO TaskSetManager: Starting task 6.0: as TID on executor : jfp3- (NODE_LOCAL)
// :: INFO TaskSetManager: Serialized task 6.0: as bytes in ms
// :: INFO TaskSetManager: Finished TID in ms on jfp3- (progress: /)
// :: INFO DAGScheduler: Completed ResultTask(, )
// :: INFO DAGScheduler: Completed ResultTask(, )
// :: INFO TaskSetManager: Finished TID in ms on jfp3- (progress: /)
// :: INFO TaskSchedulerImpl: Removed TaskSet 6.0, whose tasks have all completed, from pool
// :: INFO DAGScheduler: Stage (collect at <console>:) finished in 0.039 s
// :: INFO SparkContext: Job finished: collect at <console>:, took 0.052556716 s
[Gong Shaocheng]
[Li Dachao]
[Qiu Xin]
[Cheng Jiangzhong]
[Wo Binggang]

SparkSQL之旅的更多相关文章

  1. sparkSQL实战详解

    摘要   如果要想真正的掌握sparkSQL编程,首先要对sparkSQL的整体框架以及sparkSQL到底能帮助我们解决什么问题有一个整体的认识,然后就是对各个层级关系有一个清晰的认识后,才能真正的 ...

  2. hadoop学习之旅1

    大数据介绍 大数据本质也是数据,但是又有了新的特征,包括数据来源广.数据格式多样化(结构化数据.非结构化数据.Excel文件.文本文件等).数据量大(最少也是TB级别的.甚至可能是PB级别).数据增长 ...

  3. 一条Sql的Spark之旅

    背景 ​ SQL作为一门标准的.通用的.简单的DSL,在大数据分析中有着越来越重要的地位;Spark在批处理引擎领域当前也是处于绝对的地位,而Spark2.0中的SparkSQL也支持ANSI-SQL ...

  4. Linq之旅:Linq入门详解(Linq to Objects)

    示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...

  5. WCF学习之旅—第三个示例之四(三十)

           上接WCF学习之旅—第三个示例之一(二十七)               WCF学习之旅—第三个示例之二(二十八)              WCF学习之旅—第三个示例之三(二十九)   ...

  6. 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法

    若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...

  7. Hadoop学习之旅二:HDFS

    本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整 ...

  8. .NET跨平台之旅:在生产环境中上线第一个运行于Linux上的ASP.NET Core站点

    2016年7月10日,我们在生产环境中上线了第一个运行于Linux上的ASP.NET Core站点,这是一个简单的提供后端服务的ASP.NET Core Web API站点. 项目是在Windows上 ...

  9. 【Knockout.js 学习体验之旅】(3)模板绑定

    本文是[Knockout.js 学习体验之旅]系列文章的第3篇,所有demo均基于目前knockout.js的最新版本(3.4.0).小茄才识有限,文中若有不当之处,还望大家指出. 目录: [Knoc ...

随机推荐

  1. Tomcat JSP提交参数中文乱码问题解决

    参考: http://blog.csdn.net/error_case/article/details/8250209 中文乱码是个老生常谈的问题,一般情况下,只要保证页面,web服务器,数据库的编码 ...

  2. 关于img 403 forbidden的一些思考

    网页中经常需要显示图片给用户看,对网站本身来说有的图片是从本地图片服务器来的,但是一旦数量多了以后,磁盘空间又是一个问题. 所以有时就希望显示其他网站的Image,直接把其他网站的图片显示在我的网站上 ...

  3. Android 内存泄漏总结

    内存管理的目的就是让我们在开发中怎么有效的避免我们的应用出现内存泄漏的问题.内存泄漏大家都不陌生了,简单粗俗的讲,就是该被释放的对象没有释放,一直被某个或某些实例所持有却不再被使用导致 GC 不能回收 ...

  4. AC自动机——Uva 11468 子串

    题目链接:http://vjudge.net/contest/142513#problem/A 题意:给出一些字符和各自对应的选择概率,随机选择L次后将得到一个长度为L的随机字符串S.给出K个模版串, ...

  5. viewport 详解

    <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale= ...

  6. ASP.Net系列教程

    Getting Started with ASP.NET MVC This is a beginner tutorial that introduces the basics of ASP.NET M ...

  7. FPGA相关术语(一)

    参考资料: 1. 数字时钟管理单元DCM 2. RS-232 知识点: ● Xilinx) Digital Clock Manager(DCM) primitive用于实现延迟锁相环(delay lo ...

  8. Android Fragment是什么

    Fragment是Activity中用户界面的一个行为或者一个部分.你可以在一个单独的Activity上把多个Fragment组合成一个多区域的UI,并且可以在多个Activity中使用.你可以认为F ...

  9. [css]【转载张鑫旭】我是如何对网站CSS进行架构的

    一.写在前面的 都是自己积累形成的一些东西,可能带有明显的个人印记.不是专业内容,不是权威指南,只是展示一点自己的观点,借此希望能与各位优秀的同行交流看法,见解.以得到进步与提高. 二.我所知的一些过 ...

  10. CSS 3 选择器

    css3叫做样式表  对页面的布局,字体,颜色,背景和其他效果做更精确的布置 支持的浏览器有 chrome safari firfox opera 甚至360都开始支持360用的是别的内核 IE10 ...