(题目懒得打字了,建议到新窗口查看)

显然这玩意儿是可以按位搞的...然后就是一个裸的最小割模型?

然而这样做理论上只有30分实际上有40分

事实上我们可以发现,每一列的取值只和上一列有关,这样我们就可以以每一列为状态进行dp。

记dp[i][j]表示第i列状态为j的方案数,考虑上一列的状态,把它们异或在一起瞎统计一下就行了。

这样做理论复杂度是可以AC的,实际上要跑3s左右......怎么卡常也卡不过去,于是开了O2就过了

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
#include <vector>
#include <limits>
#include <set>
#include <map>
using namespace std;
int N,M,a[6][10009],b[6][10009],d[6][10009],l[6][10009],c[10009],bl[32][10009];
typedef long long ll;
ll dp[32][10009];
void gmin(ll& a,ll b)
{
if(a>b) a=b;
}
ll sq(ll p)
{
ll qwq=10000000000000LL;
for(int j=0;j<M;j++)
{
for(int k=0;k<(1<<N);k++)
{
ll ans=0,a2=10000000000000LL;
bool lst=k&1;
for(int g=N-1;g>=0;g--)
{
bool cur=k&(1<<g);
if(bool(a[g][j]&p)!=cur) ans+=b[g][j];
if(lst!=cur) ans+=d[g][j];
lst=cur;
}
if(j==0) {dp[k][j]=ans; continue;}
for(int l=0;l<(1<<N);l++) gmin(a2,bl[l^k][j]+dp[l][j-1]);
dp[k][j]=ans+a2;
}
}
for(int k=0;k<(1<<N);k++) qwq=min(qwq,dp[k][M-1]);
return qwq;
}
int main()
{
freopen("chessboard.in","r",stdin);
freopen("chessboard.out","w",stdout);
scanf("%d%d",&N,&M);
for(int i=0;i<N;i++)
{
for(int j=0;j<M;j++) scanf("%d",&a[i][j]);
}
for(int i=0;i<N;i++)
{
for(int j=0;j<M;j++) scanf("%d",&b[i][j]);
}
for(int i=0;i<N;i++)
{
for(int j=1;j<M;j++) scanf("%d",&l[i][j]);
}
for(int j=1;j<M;j++)
for(int i=0;i<(1<<N);i++)
{
ll g=0;
for(int p=0;p<N;p++)
{
if(i&(1<<p)) g+=l[p][j];
}
bl[i][j]=g;
}
for(int i=0;i<N;i++)
{
for(int j=0;j<M;j++) scanf("%d",&d[i][j]);
}
ll ans=0;
for(int P=1;P<=1000000;P*=2) ans+=sq(P)*P;
printf("%I64d\n",ans);
}

FJOI省队集训 chessboard的更多相关文章

  1. FJOI省队集训 florida

    省队成员(大部分)都没来...像我这种沙茶天天写写玄学算法都能排在榜上面...果然正解写挂的人远比暴力拍对的人少啊...陆陆续续会补一些题解.(不过有些题太神了可能补不上题解 有n个物品,两个袋子A和 ...

  2. JS省队集训记

    不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...

  3. [2018HN省队集训D9T1] circle

    [2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...

  4. [2018HN省队集训D8T1] 杀毒软件

    [2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...

  5. [2018HN省队集训D8T3] 水果拼盘

    [2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...

  6. [2018HN省队集训D6T2] girls

    [2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...

  7. [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform

    [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...

  8. [2018HN省队集训D5T2] party

    [2018HN省队集训D5T2] party 题意 给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值. 有 \(q\) 个查询, 每次给定一个大小为 ...

  9. [2018HN省队集训D5T1] 沼泽地marshland

    [2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...

随机推荐

  1. This version of android studio is incompatible with the gradle version used.Try disabling the instant run解决办法

    今天打开android studio又碰到一个奇怪的问题:This version of android studio is incompatible with the gradle version ...

  2. iOS之属性修饰符 retain、strong和copy区别测试

    时不时会有点迷惑属性修饰符retain.strong.copy三者之间的区别,还是把测试过程记录下来好一点! 1.属性修饰符结论 2.给retain.strong.copy修饰的字符串属性赋值指针变化 ...

  3. NSJSONSerialization

    /*     总结:   json格式的读写: 解析: data =   NSData  dataWithContentsOfUrl:XXX id obj  =  [ NSJsonSerializat ...

  4. UITableView详细注释

    style //普通 UITableViewStylePlain, //分组 UITableViewStyleGrouped //表格视图 UITableView * tableView = [[UI ...

  5. 试用Jenkins 2 的 Pipeline 项目

    目前Jenkins最新的版本是2.7,现在试用一下pipeline类型的项目,本来想构建一个1.651版本的Jenkins为例,无奈大陆的网络 访问github不稳定,只好改为简单的工程. 目前有一个 ...

  6. Apache 反向代理实现为http添加https的外衣

    Apache 反向代理 金天:坚持写东西,不是一件容易的事,换句话说其实坚持本身都不是一件容易的事.如果学习有捷径,那就是不断实践,不断积累.写笔记,其实是给自己看的,是体现积累的一种方式,要坚持. ...

  7. Third glance in Go

    在Go語言裏關於數組(Array),切片(Slice)和映射表(Map)的使用是非常常見的.有過其他語言編程背景的人會比較熟悉一下,但是也是因爲過於的熟悉,從而導致一個慣性思維,往往就會踢到“石頭”, ...

  8. vue相关的 helloword示例

    <!DOCTYPE html><html> <head> <title></title> <script src="http ...

  9. 烂泥:apache虚拟主机的学习与应用

    本文由秀依林枫提供友情赞助,首发于烂泥行天下. 要配置apache的虚拟主机,我们需要分以下几步进行: 1. 检查apache虚拟主机模块 2. 开启apache虚拟主机功能 3. httpd-vho ...

  10. Jmeter之Bean shell使用(一)

    一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanS ...